Geisinger Center for Health Research, 100 N. Academy Avenue M.C. 44-00, Danville, PA 17822, USA.
Health Serv Res. 2011 Dec;46(6pt1):1720-40. doi: 10.1111/j.1475-6773.2011.01285.x. Epub 2011 Jun 20.
To explain observed differences in patient outcomes across payer types using hospital discharge records. Specifically, we address two mechanisms: hospital-payer matching versus unobserved patient heterogeneity.
Florida's hospital discharge records (1996-2000) of major surgery patients with private health insurance between the ages of 18 and 65, Health Maintenance Organization (HMO) market penetration data, hospital systems data, and the Area Resource File.
The dependent variable is occurrence of one or more in-hospital complications as identified by the Complication Screening Program. The key independent variable is patients' primary-payer type (HMO, Preferred Provider Organization, and fee-for-service). We estimate five different logistic regression models, each representing a different assumption about the underlying factors that confound the causal relationship between the payer type and the likelihood of experiencing complications.
We find that the observed differences in complication rates across payer types are largely driven by unobserved differences in patient health, even after adjusting for case mix using available data elements in the discharge records.
Because of the limitations inherent to hospital discharge records, making quality comparisons in terms of patient outcomes is challenging. As such, any efforts to assess quality in such a manner must be carried out cautiously.
利用医院出院记录解释不同付费类型患者的治疗结果差异。具体而言,我们将探讨两种机制:医院与付费方的匹配与未观察到的患者异质性。
佛罗里达州医院出院记录(1996-2000 年),纳入 18-65 岁有私人医疗保险的主要手术患者,以及健康维护组织(HMO)市场渗透数据、医院系统数据和区域资源档案。
因变量是由并发症筛查程序确定的一种或多种院内并发症的发生情况。关键的自变量是患者的主要付费方类型(HMO、优选提供者组织和按服务收费制)。我们估计了五个不同的逻辑回归模型,每个模型都代表了对混淆付费类型与并发症发生可能性之间因果关系的潜在因素的不同假设。
即使使用出院记录中可用的数据元素来调整病例组合,我们发现,不同付费类型患者的并发症发生率的差异主要是由患者健康状况的未观察到的差异所驱动。
由于医院出院记录固有的局限性,根据患者结局进行质量比较具有挑战性。因此,任何以这种方式评估质量的努力都必须谨慎进行。