Suppr超能文献

测量氡和氙与笼形分子主体的结合。

Measurement of radon and xenon binding to a cryptophane molecular host.

机构信息

Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):10969-73. doi: 10.1073/pnas.1105227108. Epub 2011 Jun 20.

Abstract

Xenon and radon have many similar properties, a difference being that all 35 isotopes of radon ((195)Rn-(229)Rn) are radioactive. Radon is a pervasive indoor air pollutant believed to cause significant incidence of lung cancer in many geographic regions, yet radon affinity for a discrete molecular species has never been determined. By comparison, the chemistry of xenon has been widely studied and applied in science and technology. Here, both noble gases were found to bind with exceptional affinity to tris-(triazole ethylamine) cryptophane, a previously unsynthesized water-soluble organic host molecule. The cryptophane-xenon association constant, K(a)=42,000 ± 2,000 M(-1) at 293 K, was determined by isothermal titration calorimetry. This value represents the highest measured xenon affinity for a host molecule. The partitioning of radon between air and aqueous cryptophane solutions of varying concentration was determined radiometrically to give the cryptophane-radon association constant K(a)=49,000 ± 12,000 M(-1) at 293 K.

摘要

氙气和氡气有许多相似的性质,不同之处在于氡气的所有 35 种同位素((195)Rn-(229)Rn)都是放射性的。氡气是一种普遍存在的室内空气污染物,据信在许多地理区域都会导致大量肺癌病例,但氡气与特定分子种类的亲和力从未被确定过。相比之下,氙气的化学性质已经得到了广泛的研究和应用。在这里,两种惰性气体都被发现与三-(三唑乙基胺)cryptophane 具有特殊的亲和力,这是一种以前未合成的水溶性有机主体分子。cryptophane-xenon 缔合常数,K(a)=42,000 ± 2,000 M(-1)在 293 K 时,通过等温滴定量热法确定。这个值代表了迄今测量到的对主体分子的最高氙气亲和力。通过放射性测定,确定了空气和不同浓度的水溶液之间的氡气分配,给出了 293 K 时的 cryptophane-radon 缔合常数 K(a)=49,000 ± 12,000 M(-1)。

相似文献

1
Measurement of radon and xenon binding to a cryptophane molecular host.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):10969-73. doi: 10.1073/pnas.1105227108. Epub 2011 Jun 20.
2
3
A novel application for 222Rn emanation standards: radon-cryptophane host chemistry.
Appl Radiat Isot. 2012 Sep;70(9):1997-2001. doi: 10.1016/j.apradiso.2012.02.099. Epub 2012 Mar 9.
4
Utilizing a water-soluble cryptophane with fast xenon exchange rates for picomolar sensitivity NMR measurements.
Anal Chem. 2012 Nov 20;84(22):9935-41. doi: 10.1021/ac302347y. Epub 2012 Nov 6.
5
Temperature calibration of Pico-Rad detectors for radon measurement.
Int J Occup Med Environ Health. 2000;13(2):147-54.
6
Contribution of (222)Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China.
J Environ Radioact. 2011 Apr;102(4):400-6. doi: 10.1016/j.jenvrad.2011.02.010. Epub 2011 Mar 5.
7
Preliminary assessment of thoron exposure in Canada.
Radiat Prot Dosimetry. 2010 Oct;141(4):322-7. doi: 10.1093/rpd/ncq226.
8
Investigations on indoor radon in Austria, Part 1: Seasonality of indoor radon concentration.
J Environ Radioact. 2007;98(3):329-45. doi: 10.1016/j.jenvrad.2007.06.006. Epub 2007 Aug 17.
9
Radon and thoron doses in kindergartens and elementary schools.
Radiat Prot Dosimetry. 2012 Nov;152(1-3):247-52. doi: 10.1093/rpd/ncs232. Epub 2012 Aug 28.
10
A survey of indoor workplace radon concentration in Japan.
J Environ Radioact. 2006;87(3):239-45. doi: 10.1016/j.jenvrad.2005.12.001. Epub 2006 Feb 3.

引用本文的文献

1
Ultrasensitive Xe Magnetic Resonance Imaging: From Clinical Monitoring to Molecular Sensing.
Adv Sci (Weinh). 2025 Feb;12(8):e2413426. doi: 10.1002/advs.202413426. Epub 2025 Jan 21.
2
Dispersion Interactions in Condensed Phases and inside Molecular Containers.
Acc Chem Res. 2023 Dec 5;56(23):3451-3461. doi: 10.1021/acs.accounts.3c00523. Epub 2023 Nov 13.
4
Counteranions at Peripheral Sites Tune Guest Affinity for a Protonated Hemicryptophane.
J Org Chem. 2022 Apr 15;87(8):5158-5165. doi: 10.1021/acs.joc.1c03128. Epub 2022 Mar 25.
5
Cryptophane-xenon complexes for Xe MRI applications.
RSC Adv. 2021;11(13):7693-7703. doi: 10.1039/d0ra10765d. Epub 2021 Feb 17.
6
Molecular Sensing with Host Systems for Hyperpolarized Xe.
Molecules. 2020 Oct 11;25(20):4627. doi: 10.3390/molecules25204627.
7
Xe affinities of water-soluble cryptophanes and the role of confined water.
Chem Sci. 2015 Dec 1;6(12):7238-7248. doi: 10.1039/c5sc02401c. Epub 2015 Sep 22.
8
A cryptophane-based "turn-on" Xe NMR biosensor for monitoring calmodulin.
Org Biomol Chem. 2017 Oct 31;15(42):8883-8887. doi: 10.1039/c7ob02391j.
9
NMR Hyperpolarization Techniques of Gases.
Chemistry. 2017 Jan 18;23(4):725-751. doi: 10.1002/chem.201603884. Epub 2016 Dec 5.
10
An Expanded Palette of Xenon-129 NMR Biosensors.
Acc Chem Res. 2016 Oct 18;49(10):2179-2187. doi: 10.1021/acs.accounts.6b00309. Epub 2016 Sep 19.

本文引用的文献

1
Cell-compatible, integrin-targeted cryptophane-Xe NMR biosensors.
Chem Sci. 2011 Jun;2(6):1103-1110. doi: 10.1039/C1SC00041A.
2
Hyperpolarized 129Xe NMR signature of living biological cells.
NMR Biomed. 2011 Dec;24(10):1264-9. doi: 10.1002/nbm.1686. Epub 2011 Mar 15.
3
Crystallographic observation of 'induced fit' in a cryptophane host-guest model system.
Nat Commun. 2010;1:148. doi: 10.1038/ncomms1151. Epub 2010 Dec 21.
5
Effect of pH and counterions on the encapsulation properties of xenon in water-soluble cryptophanes.
Chemistry. 2010 Nov 15;16(43):12941-6. doi: 10.1002/chem.201001170.
6
Functionalized 129Xe contrast agents for magnetic resonance imaging.
Curr Opin Chem Biol. 2010 Feb;14(1):97-104. doi: 10.1016/j.cbpa.2009.10.009. Epub 2009 Nov 13.
7
A xenon-129 biosensor for monitoring MHC-peptide interactions.
Angew Chem Int Ed Engl. 2009;48(23):4142-5. doi: 10.1002/anie.200806149.
8
9
Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase.
J Am Chem Soc. 2009 Jan 21;131(2):563-9. doi: 10.1021/ja806092w.
10
Cryptophanes and their complexes--present and future.
Chem Rev. 2009 Jan;109(1):88-130. doi: 10.1021/cr0680437.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验