Suppr超能文献

在 1.5T 和 3.0T 场强下应用超短回波时间成像技术行自由呼吸状态下肺部 T2*值的对比研究。

Comparison of lung T2* during free-breathing at 1.5 T and 3.0 T with ultrashort echo time imaging.

机构信息

Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

出版信息

Magn Reson Med. 2011 Jul;66(1):248-54. doi: 10.1002/mrm.22829. Epub 2011 Feb 24.

Abstract

Assessment of lung effective transverse relaxation time (T(2)) may play an important role in the detection of structural and functional changes caused by lung diseases such as emphysema and chronic bronchitis. While T(2) measurements have been conducted in both animals and humans at 1.5 T, studies on human lung at 3.0 T have not yet been reported. In this work, ultrashort echo time imaging technique was applied for the measurement and comparison of T(2)* values in normal human lungs at 1.5 T and 3.0 T. A 2D ultrashort echo time pulse sequence was implemented and evaluated in phantom experiments, in which an eraser served as a homogeneous short T(2)* sample. For the in vivo study, five normal human subjects were imaged at both field strengths and the results compared. The average T(2)* values measured during free-breathing were 2.11(±0.27) ms at 1.5 T and 0.74(±0.1) ms at 3.0 T, respectively, resulting in a 3.0 T/1.5 T ratio of 2.9. Furthermore, comparison of the relaxation values at end-expiration and end-inspiration, accomplished through self-gating, showed that during normal breathing, differences in T(2)* between the two phases may be negligible.

摘要

肺有效横向弛豫时间(T(2)*)的评估可能在检测肺气肿和慢性支气管炎等肺部疾病引起的结构和功能变化方面发挥重要作用。虽然在 1.5 T 下已经在动物和人体中进行了 T(2)*测量,但尚未有关于 3.0 T 下人体肺部的研究报告。在这项工作中,应用超短回波时间成像技术在 1.5 T 和 3.0 T 下测量和比较正常人体肺部的 T(2)*值。在体模实验中实现并评估了二维超短回波时间脉冲序列,其中橡皮擦用作均匀的短 T(2)*样品。对于体内研究,在两个场强下对五名正常人体受试者进行了成像,并对结果进行了比较。在自由呼吸期间测量的平均 T(2)*值分别为 1.5 T 时的 2.11(±0.27) ms 和 3.0 T 时的 0.74(±0.1) ms,因此 3.0 T/1.5 T 比值为 2.9。此外,通过自门控比较呼气末和吸气末的弛豫值表明,在正常呼吸期间,两个相位之间的 T(2)*差异可能可以忽略不计。

相似文献

1
Comparison of lung T2* during free-breathing at 1.5 T and 3.0 T with ultrashort echo time imaging.
Magn Reson Med. 2011 Jul;66(1):248-54. doi: 10.1002/mrm.22829. Epub 2011 Feb 24.
2
In Vivo Measurements of T2 Relaxation Time of Mouse Lungs during Inspiration and Expiration.
PLoS One. 2016 Dec 9;11(12):e0166879. doi: 10.1371/journal.pone.0166879. eCollection 2016.
4
Free-breathing cine DENSE MRI using phase cycling with matchmaking and stimulated-echo image-based navigators.
Magn Reson Med. 2018 Nov;80(5):1907-1921. doi: 10.1002/mrm.27199. Epub 2018 Apr 1.
6
Lung T * mapping using 3D ultrashort TE with tight intervals δTE.
Magn Reson Med. 2023 Nov;90(5):2001-2010. doi: 10.1002/mrm.29756. Epub 2023 Jun 8.
7
Short T2 contrast with three-dimensional ultrashort echo time imaging.
Magn Reson Imaging. 2011 May;29(4):470-82. doi: 10.1016/j.mri.2010.11.003.
9
Multistage self-gated lung imaging in small rodents.
Magn Reson Med. 2016 Jun;75(6):2448-54. doi: 10.1002/mrm.25849. Epub 2015 Jul 17.

引用本文的文献

2
Reproducibility of automatic adipose tissue segmentation using proton density fat fraction images between 1.5 and 3.0 T magnetic resonance.
Quant Imaging Med Surg. 2025 Jan 2;15(1):537-552. doi: 10.21037/qims-24-1306. Epub 2024 Dec 24.
3
Pulmonary MRI in Newborns and Children.
J Magn Reson Imaging. 2025 May;61(5):2094-2115. doi: 10.1002/jmri.29669. Epub 2024 Dec 6.
4
Impact of undersampling on preclinical lung T* mapping with 3D radial UTE MRI at 7 T.
J Magn Reson. 2024 Aug;365:107741. doi: 10.1016/j.jmr.2024.107741. Epub 2024 Jul 26.
5
Quantitative MRI Evaluation of Ferritin Overexpression in Non-Small-Cell Lung Cancer.
Int J Mol Sci. 2024 Feb 18;25(4):2398. doi: 10.3390/ijms25042398.
6
Specific Ventilation in Severe Asthma Evaluated with Noncontrast Tidal Breathing H MRI.
Radiol Cardiothorac Imaging. 2023 Dec;5(6):e230054. doi: 10.1148/ryct.230054.
7
Feasibility of dynamic T *-based oxygen-enhanced lung MRI at 3T.
Magn Reson Med. 2024 Mar;91(3):972-986. doi: 10.1002/mrm.29914. Epub 2023 Nov 27.
9
New clinical opportunities of low-field MRI: heart, lung, body, and musculoskeletal.
MAGMA. 2024 Feb;37(1):1-14. doi: 10.1007/s10334-023-01123-w. Epub 2023 Oct 30.
10
Lung T * mapping using 3D ultrashort TE with tight intervals δTE.
Magn Reson Med. 2023 Nov;90(5):2001-2010. doi: 10.1002/mrm.29756. Epub 2023 Jun 8.

本文引用的文献

1
4
Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect.
J Appl Physiol (1985). 2007 Jul;103(1):240-8. doi: 10.1152/japplphysiol.01289.2006. Epub 2007 Mar 29.
5
An optimal radial profile order based on the Golden Ratio for time-resolved MRI.
IEEE Trans Med Imaging. 2007 Jan;26(1):68-76. doi: 10.1109/TMI.2006.885337.
6
Oxygen-enhanced proton imaging of the human lung using T2.
Magn Reson Med. 2005 May;53(5):1193-6. doi: 10.1002/mrm.20448.
7
Magnetic resonance: an introduction to ultrashort TE (UTE) imaging.
J Comput Assist Tomogr. 2003 Nov-Dec;27(6):825-46. doi: 10.1097/00004728-200311000-00001.
9
MR imaging of pulmonary parenchyma with a half-Fourier single-shot turbo spin-echo (HASTE) sequence.
Eur J Radiol. 1999 Feb;29(2):152-9. doi: 10.1016/s0720-048x(98)00167-3.
10
Field strength and angle dependence of trabecular bone marrow transverse relaxation in the calcaneus.
J Magn Reson Imaging. 1997 Mar-Apr;7(2):382-8. doi: 10.1002/jmri.1880070222.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验