Suppr超能文献

使用1.5至3.0T磁共振质子密度脂肪分数图像进行自动脂肪组织分割的可重复性

Reproducibility of automatic adipose tissue segmentation using proton density fat fraction images between 1.5 and 3.0 T magnetic resonance.

作者信息

Cheng Chuanli, Zhang Naiwen, Gong Jingshan, Wan Liwen, Peng Hao, Wan Qian, Huang Bingsheng, Zeng Hongwu, Liu Xin, Zheng Hairong, Zou Chao

机构信息

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China.

出版信息

Quant Imaging Med Surg. 2025 Jan 2;15(1):537-552. doi: 10.21037/qims-24-1306. Epub 2024 Dec 24.

Abstract

BACKGROUND

Deep learning (DL)-based adipose tissue segmentation methods have shown great performance and efficacy for adipose tissue distribution analysis using magnetic resonance (MR) images, an important indicator of metabolic health and disease. The aim of this study was to evaluate the reproducibility of whole-body adipose tissue distribution analysis using proton density fat fraction (PDFF) images at different MR strengths.

METHODS

A total of 24 volunteers were imaged using both 1.5 and 3.0 T clinical MR imaging (MRI) scanners at two sites. Whole-body PDFF images were acquired covering from neck to knee, and grouped into three subparts: thorax, abdomen, and thigh. The PDFF images were then segmented automatically into subcutaneous adipose tissue (SAT) and internal adipose tissue (IAT) using a U-Net DL model. The volumes of whole body (WH), total adipose tissue (TAT), SAT, and IAT for total body and each subpart were measured, and the volume ratio of TAT/WH, SAT/WH, IAT/WH, SAT/TAT, and IAT/SAT were also calculated. Additionally, the reproducibility of PDFF values of SAT and IAT for total body and subparts were evaluated.

RESULTS

The intraclass correlation coefficient (ICC) and Pearson correlation coefficient of these volumes and volume ratios in whole-body between the two scanners were very close to one. The paired -test and Bland-Altman plots for all comparisons showed no significant differences (P>0.05) when comparing the results from the 1.5 T scanner minus those from the 3.0 T scanner. The mean bias for WH, TAT, SAT, and IAT was -6.89 cm (P=0.95), -67.21 cm (P=0.40), 19.31 cm (P=0.74), and -18.84 cm (P=0.69), respectively. Good reproducibility performances were also found in each subpart, except for the indices of IAT volume, TAT/WH ratio, and SAT/TAT ratio in the thorax due to different susceptibility effects across MR strengths. The results also demonstrated good reproducibility between PDFF values of the two scanners with the mean bias for WH, thorax, abdomen, and thigh being -0.19% (P=0.219), -0.30% (P=0.118), 0.086% (P=0.494), and 0.24% (P=0.186) for SAT, respectively, as well as 0.35% (P=0.136), 0.46% (P=0.150), 0.58% (P=0.255), and 0.40% (P=0.169) for IAT, respectively.

CONCLUSIONS

Good reproducibility of whole-body adipose tissue distribution analysis using the DL method between 1.5 and 3.0 T MR images was demonstrated, which may facilitate the whole-body adipose tissue distribution analysis using the quantitative MR-PDFF images.

摘要

背景

基于深度学习(DL)的脂肪组织分割方法在利用磁共振(MR)图像进行脂肪组织分布分析方面展现出了卓越的性能和效果,而脂肪组织分布是代谢健康和疾病的一项重要指标。本研究的目的是评估在不同MR强度下使用质子密度脂肪分数(PDFF)图像进行全身脂肪组织分布分析的可重复性。

方法

共有24名志愿者在两个地点分别使用1.5T和3.0T临床磁共振成像(MRI)扫描仪进行成像。获取覆盖从颈部到膝盖的全身PDFF图像,并将其分为三个子部分:胸部、腹部和大腿。然后使用U-Net DL模型将PDFF图像自动分割为皮下脂肪组织(SAT)和内部脂肪组织(IAT)。测量全身(WH)、总脂肪组织(TAT)、SAT和IAT在全身及每个子部分的体积,并计算TAT/WH、SAT/WH、IAT/WH、SAT/TAT和IAT/SAT的体积比。此外,评估了全身及子部分SAT和IAT的PDFF值的可重复性。

结果

两台扫描仪之间全身这些体积和体积比的组内相关系数(ICC)和Pearson相关系数非常接近1。当比较1.5T扫描仪与3.0T扫描仪的结果时,所有比较的配对t检验和Bland-Altman图均显示无显著差异(P>0.05)。WH、TAT、SAT和IAT的平均偏差分别为-6.89 cm(P=0.95)、-67.21 cm(P=0.40)、19.31 cm(P=0.74)和-18.84 cm(P=0.69)。除了由于不同MR强度下的磁化率效应导致胸部IAT体积、TAT/WH比值和SAT/TAT比值的指标外,在每个子部分也发现了良好的可重复性表现。结果还表明两台扫描仪的PDFF值之间具有良好的可重复性,全身、胸部、腹部和大腿SAT的平均偏差分别为-0.19%(P=0.219)、-0.30%(P=0.118)、0.086%(P=0.494)和0.24%(P=0.186),IAT的平均偏差分别为0.35%(P=0.136)、0.46%(P=0.150)、0.58%(P=0.255)和0.40%(P=0.169)。

结论

证明了使用DL方法在1.5T和3.0T MR图像之间进行全身脂肪组织分布分析具有良好的可重复性,这可能有助于使用定量MR-PDFF图像进行全身脂肪组织分布分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2bd/11744155/b98d9ed5a66d/qims-15-01-537-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验