Wang Jimin, Askerka Mikhail, Brudvig Gary W, Batista Victor S
Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8114, United States.
Department of Chemistry, Yale University , New Haven, Connecticut 06520-8107, United States.
ACS Energy Lett. 2017 Feb 10;2(2):397-407. doi: 10.1021/acsenergylett.6b00626. Epub 2017 Jan 12.
Understanding structure-function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure-function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.
了解光系统II(PSII)中的结构-功能关系对于仿生光催化系统的开发至关重要。X射线晶体学、计算建模和光谱学在阐明PSII的结构和功能方面发挥了核心作用。飞秒X射线晶体学的最新突破提供了在样品受到辐射损伤之前从X射线自由电子激光(XFEL)收集衍射数据的可能性,从而克服了传统X射线衍射方法的主要挑战。然而,由于数据处理问题、重金属中心附近轻氧原子精确位置的不确定性以及微晶中S态跃迁与溶液相比的不同动力学,对来自PSII中间体的XFEL数据进行解释具有挑战性。在这里,我们总结了PSII结构-功能测定方面的最新进展和突出挑战,重点是量子力学/分子力学技术与同晶型差异傅里叶图、直接法和高分辨率光谱学相结合的应用。