Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom.
Circ Res. 2011 Jun 24;109(1):86-96. doi: 10.1161/CIRCRESAHA.111.242974.
As described in earlier reviews in this series on the molecular basis of hypertrophic cardiomyopathy (HCM), HCM is one of the archetypal monogenic cardiovascular disorders to be understood at the molecular level. Twenty years after the discovery of the first HCM disease gene, genetic studies still confirm that HCM is principally a disease of the sarcomere. At the biophysical level, myofilament mutations generally enhance Ca(2+) sensitivity, maximal force production, and ATPase activity. These defects ultimately appear to converge on energy deficiency and altered Ca(2+) handling as major common paths leading to the anatomic (hypertrophy, myofiber disarray, and fibrosis) and functional features (pathological signaling and diastolic dysfunction) characteristic of HCM. In this review, we provide an account of the consequences of HCM mutations and describe how specifically targeting these molecular features has already yielded early promise for novel therapies for HCM. Although substantial efforts are still required to understand the molecular link between HCM mutations and their clinical consequences, HCM endures as an exemplar of how novel insights derived from molecular characterization of Mendelian disorders can inform the understanding of biological processes and translate into rational therapies.
正如本系列中关于肥厚型心肌病 (HCM) 分子基础的早期综述所述,HCM 是在分子水平上理解的典型单基因心血管疾病之一。在发现第一个 HCM 疾病基因 20 年后,遗传研究仍证实 HCM 主要是一种肌节疾病。在生物物理水平上,肌球蛋白突变通常会增强 Ca(2+)敏感性、最大力产生和 ATP 酶活性。这些缺陷最终似乎集中在能量不足和改变的 Ca(2+)处理上,这是导致 HCM 解剖学(肥大、肌纤维紊乱和纤维化)和功能特征(病理性信号和舒张功能障碍)的主要共同途径。在这篇综述中,我们提供了对 HCM 突变后果的描述,并描述了如何针对这些分子特征进行靶向治疗,已经为 HCM 的新型治疗方法带来了早期希望。尽管仍需要付出巨大努力来理解 HCM 突变与其临床后果之间的分子联系,但 HCM 仍然是一个范例,说明了从孟德尔疾病的分子特征中获得的新见解如何为生物过程的理解提供信息,并转化为合理的治疗方法。