Suppr超能文献

木质纤维素水解物的重复批次发酵生产乙醇,使用代谢工程改造的混合酿酒酵母菌株,以耐受乙酸和甲酸。

Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids.

机构信息

Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.

出版信息

Bioresour Technol. 2011 Sep;102(17):7917-24. doi: 10.1016/j.biortech.2011.06.028. Epub 2011 Jun 12.

Abstract

A major challenge associated with the fermentation of lignocellulose-derived hydrolysates is improved ethanol production in the presence of fermentation inhibitors, such as acetic and formic acids. Enhancement of transaldolase (TAL) and formate dehydrogenase (FDH) activities through metabolic engineering successfully conferred resistance to weak acids in a recombinant xylose-fermenting Saccharomyces cerevisiae strain. Moreover, hybridization of the metabolically engineered yeast strain improved ethanol production from xylose in the presence of both 30 mM acetate and 20mM formate. Batch fermentation of lignocellulosic hydrolysate containing a mixture of glucose, fructose and xylose as carbon sources, as well as the fermentation inhibitors, acetate and formate, was performed for five cycles without any loss of fermentation capacity. Long-term stability of ethanol production in the fermentation phase was not only attributed to the coexpression of TAL and FDH genes, but also the hybridization of haploid strains.

摘要

木质纤维素水解物发酵过程中存在的主要挑战是在发酵抑制剂(如乙酸和甲酸)存在的情况下提高乙醇产量。通过代谢工程提高转醛醇酶(TAL)和甲酸脱氢酶(FDH)的活性,成功赋予重组木糖发酵酿酒酵母菌株对弱酸的抗性。此外,代谢工程化酵母菌株的杂交提高了在 30mM 乙酸和 20mM 甲酸存在下从木糖生产乙醇的产量。以葡萄糖、果糖和木糖作为碳源的混合木质纤维素水解物以及发酵抑制剂乙酸和甲酸的分批发酵进行了五个周期,没有任何发酵能力的损失。在发酵阶段乙醇生产的长期稳定性不仅归因于 TAL 和 FDH 基因的共表达,还归因于单倍体菌株的杂交。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验