Suppr超能文献

小韦荣球菌的遗传转化。

Genetic transformation of Veillonella parvula.

机构信息

Department of Oral Biology, College of Dentistry, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

出版信息

FEMS Microbiol Lett. 2011 Sep;322(2):138-44. doi: 10.1111/j.1574-6968.2011.02344.x. Epub 2011 Jul 18.

Abstract

Veillonellae are one of the most prevalent and predominant microorganisms in both the supra- and subgingival plaques of the human oral cavity. Veillonellae's mutualistic relationships with the early, middle, and late colonizers of the oral cavity make them an important component of oral biofilm ecology. Unlike other ubiquitous early colonizers in the oral cavity, surprisingly little is known about Veillonella biology due to our lack of ability to genetically transform this group of bacteria. The objective of this study was to test the transformability of veillonellae. Using Veillonella parvula strain PK1910, we first obtained spontaneous mutations conferring streptomycin resistance. These mutations all carry a K43N substitution in the RpsL protein. Using the mutated rpsL gene as a selection marker, a variety of conditions were tested and optimized for electroporation. With the optimized protocol, we were able to introduce the first targeted mutation into the chromosome of V. parvula PK1910. Although more studies are needed to develop a robust genetic manipulation system in veillonellae, our results demonstrated, for the first time, that V. parvula is transformable, at least for strain PK1910.

摘要

韦荣氏球菌是人类口腔的龈上和龈下菌斑中最普遍和主要的微生物之一。韦荣氏球菌与口腔早期、中期和晚期定植者的共生关系使它们成为口腔生物膜生态学的重要组成部分。与口腔中其他普遍存在的早期定植者不同,由于我们缺乏对这群细菌进行基因转化的能力,因此对韦荣氏球菌的生物学特性知之甚少。本研究旨在测试韦荣氏球菌的可转化性。使用韦荣氏球菌 PK1910 株,我们首先获得了赋予链霉素抗性的自发突变。这些突变均在 RpsL 蛋白中携带 K43N 取代。使用突变的 rpsL 基因作为选择标记,我们测试并优化了各种电穿孔条件。使用优化的方案,我们能够将第一个靶向突变引入 V. parvula PK1910 的染色体中。尽管需要进一步的研究来开发韦荣氏球菌中稳健的遗传操作系统,但我们的结果首次表明,至少对于 PK1910 株,韦荣氏球菌是可转化的。

相似文献

1
Genetic transformation of Veillonella parvula.
FEMS Microbiol Lett. 2011 Sep;322(2):138-44. doi: 10.1111/j.1574-6968.2011.02344.x. Epub 2011 Jul 18.
2
Natural Competence Is Common among Clinical Isolates of and Is Useful for Genetic Manipulation of This Key Member of the Oral Microbiome.
Front Cell Infect Microbiol. 2017 Apr 20;7:139. doi: 10.3389/fcimb.2017.00139. eCollection 2017.
4
Characterization of a Streptococcus sp.-Veillonella sp. community micromanipulated from dental plaque.
J Bacteriol. 2008 Dec;190(24):8145-54. doi: 10.1128/JB.00983-08. Epub 2008 Sep 19.
7
Identification of and adhesins mediating co-aggregation and its impact on physiology and mixed biofilm structure.
mBio. 2024 Dec 11;15(12):e0217124. doi: 10.1128/mbio.02171-24. Epub 2024 Nov 11.
8
A suitable streptomycin-resistant mutant for constructing unmarked in-frame gene deletions using rpsL as a counter-selection marker.
PLoS One. 2014 Sep 30;9(9):e109258. doi: 10.1371/journal.pone.0109258. eCollection 2014.
10
Veillonellae: Beyond Bridging Species in Oral Biofilm Ecology.
Front Oral Health. 2021 Oct 29;2:774115. doi: 10.3389/froh.2021.774115. eCollection 2021.

引用本文的文献

1
Complete genome sequence of strain PK1910.
Microbiol Resour Announc. 2025 Apr 10;14(4):e0076124. doi: 10.1128/mra.00761-24. Epub 2025 Feb 25.
4
5
Veillonellae: Beyond Bridging Species in Oral Biofilm Ecology.
Front Oral Health. 2021 Oct 29;2:774115. doi: 10.3389/froh.2021.774115. eCollection 2021.
6
[Research progress in the relationship between Veillonella and oral diseases].
Hua Xi Kou Qiang Yi Xue Za Zhi. 2020 Oct 1;38(5):576-582. doi: 10.7518/hxkq.2020.05.018.
7
Displays Altered Stress Responses While Enhancing Biofilm Formation by in Mixed-Species Consortium.
Front Cell Infect Microbiol. 2017 Dec 20;7:524. doi: 10.3389/fcimb.2017.00524. eCollection 2017.
9
Complete Genome Sequence of OK5, the First Transformable Strain in the Species.
Genome Announc. 2017 Jun 1;5(22):e00391-17. doi: 10.1128/genomeA.00391-17.
10
Natural Competence Is Common among Clinical Isolates of and Is Useful for Genetic Manipulation of This Key Member of the Oral Microbiome.
Front Cell Infect Microbiol. 2017 Apr 20;7:139. doi: 10.3389/fcimb.2017.00139. eCollection 2017.

本文引用的文献

1
Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging.
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4152-7. doi: 10.1073/pnas.1101134108. Epub 2011 Feb 16.
2
Complete genome sequence of Veillonella parvula type strain (Te3).
Stand Genomic Sci. 2010 Jan 28;2(1):57-65. doi: 10.4056/sigs.521107.
3
Microbiota of dentinal caries as assessed by reverse-capture checkerboard analysis.
Caries Res. 2011;45(1):21-30. doi: 10.1159/000322299. Epub 2010 Dec 11.
4
Clonal analysis of the microbiota of severe early childhood caries.
Caries Res. 2010;44(5):485-97. doi: 10.1159/000320158. Epub 2010 Sep 23.
5
The road to ruin: the formation of disease-associated oral biofilms.
Oral Dis. 2010 Nov;16(8):729-39. doi: 10.1111/j.1601-0825.2010.01701.x.
6
Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing.
Microb Ecol. 2010 Oct;60(3):677-90. doi: 10.1007/s00248-010-9712-8. Epub 2010 Jul 8.
9
Use of rpsL as a Counterselectable Marker in Borrelia burgdorferi.
Appl Environ Microbiol. 2010 Feb;76(3):985-7. doi: 10.1128/AEM.02172-09. Epub 2009 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验