Suppr超能文献

拟南芥 alpha1,2-葡糖基转移酶(ALG10)对于有效的 N-糖基化和叶片生长是必需的。

Arabidopsis thaliana alpha1,2-glucosyltransferase (ALG10) is required for efficient N-glycosylation and leaf growth.

机构信息

Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.

出版信息

Plant J. 2011 Oct;68(2):314-25. doi: 10.1111/j.1365-313X.2011.04688.x. Epub 2011 Jul 27.

Abstract

Assembly of the dolichol-linked oligosaccharide precursor (Glc(3) Man(9) GlcNAc(2) ) is highly conserved among eukaryotes. In contrast to yeast and mammals, little is known about the biosynthesis of dolichol-linked oligosaccharides and the transfer to asparagine residues of nascent polypeptides in plants. To understand the biological function of these processes in plants we characterized the Arabidopsis thaliana homolog of yeast ALG10, the α1,2-glucosyltransferase that transfers the terminal glucose residue to the lipid-linked precursor. Expression of an Arabidopsis ALG10-GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed a reticular distribution pattern resembling endoplasmic reticulum (ER) localization. Analysis of lipid-linked oligosaccharides showed that Arabidopsis ALG10 can complement the yeast Δalg10 mutant strain. A homozygous Arabidopsis T-DNA insertion mutant (alg10-1) accumulated mainly lipid-linked Glc(2) Man(9) GlcNAc(2) and displayed a severe protein underglycosylation defect. Phenotypic analysis of alg10-1 showed that mutant plants have altered leaf size when grown in soil. Moreover, the inactivation of ALG10 in Arabidopsis resulted in the activation of the unfolded protein response, increased salt sensitivity and suppression of the phenotype of α-glucosidase I-deficient plants. In summary, these data show that Arabidopsis ALG10 is an ER-resident α1,2-glucosyltransferase that is required for lipid-linked oligosaccharide biosynthesis and subsequently for normal leaf development and abiotic stress response.

摘要

寡糖前体(Glc(3)Man(9)GlcNAc(2))的多萜醇连接的装配在真核生物中高度保守。与酵母和哺乳动物不同,人们对植物中多萜醇连接的寡糖的生物合成以及新生多肽向天冬酰胺残基的转移知之甚少。为了了解这些过程在植物中的生物学功能,我们鉴定了酵母 ALG10 的拟南芥同源物,即向脂质连接前体转移末端葡萄糖残基的α1,2-葡糖基转移酶。拟南芥 ALG10-GFP 融合蛋白在烟草叶表皮细胞中的表达显示出网状分布模式,类似于内质网(ER)定位。脂质连接寡糖的分析表明,拟南芥 ALG10 可以补充酵母Δalg10 突变菌株。拟南芥 T-DNA 插入突变体(alg10-1)主要积累脂质连接的 Glc(2)Man(9)GlcNAc(2),并表现出严重的蛋白质糖基化缺陷。alg10-1 的表型分析表明,突变体植物在土壤中生长时叶片大小发生改变。此外,ALG10 在拟南芥中的失活导致未折叠蛋白反应的激活、盐敏感性增加以及α-葡萄糖苷酶 I 缺陷型植物表型的抑制。总之,这些数据表明,拟南芥 ALG10 是一种内质网驻留的α1,2-葡糖基转移酶,它是脂质连接寡糖生物合成所必需的,随后是正常叶片发育和非生物胁迫反应所必需的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc76/3204403/923a0db36576/tpj0068-0314-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验