Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11437-42. doi: 10.1073/pnas.1119173109. Epub 2012 Jun 25.
Asparagine-linked glycans (N-glycans) are crucial signals for protein folding, quality control, and endoplasmic reticulum (ER)-associated degradation (ERAD) in yeast and mammals. Although similar ERAD processes were reported in plants, little is known about their biochemical mechanisms, especially their relationships with N-glycans. Here, we show that a missense mutation in the Arabidopsis EMS-mutagenized bri1 suppressor 3 (EBS3) gene suppresses a dwarf mutant, bri1-9, the phenotypes of which are caused by ER retention and ERAD of a brassinosteroid receptor, BRASSINOSTEROID-INSENSITIVE 1 (BR1). EBS3 encodes the Arabidopsis ortholog of the yeast asparagine-linked glycosylation 9 (ALG9), which catalyzes the ER luminal addition of two terminal α1,2 mannose (Man) residues in assembling the three-branched N-glycan precursor glucose(Glc)(Man)(9)N-acetylglucosamine(GlcNAc). Consistent with recent discoveries revealing the importance of the Glc(3)Man(9)GlcNAc(2) C-branch in generating an ERAD signal, the ebs3-1 mutation prevents the Glc(3)Man(9)GlcNAc(2) assembly and inhibits the ERAD of bri1-9. By contrast, overexpression of EBS4 in ebs3-1 bri1-9, which encodes the Arabidopsis ortholog of the yeast ALG12 catalyzing the ER luminal α1,6 Man addition, adds an α1,6 Man to the truncated N-glycan precursor accumulated in ebs3-1 bri1-9, promotes the bri1-9 ERAD, and neutralizes the ebs3-1 suppressor phenotype. Furthermore, a transfer (T)-DNA insertional alg3-T2 mutation, which causes accumulation of an even smaller N-glycan precursor carrying a different exposed α1,6 Man, promotes the ERAD of bri1-9 and enhances its dwarfism. Taken together, our results strongly suggest that the glycan signal to mark an ERAD client in Arabidopsis is likely conserved to be an α1,6 Man-exposed N-glycan.
天冬酰胺连接的聚糖(N-聚糖)是酵母和哺乳动物中蛋白质折叠、质量控制和内质网(ER)相关降解(ERAD)的关键信号。尽管在植物中也报道了类似的 ERAD 过程,但对其生化机制知之甚少,尤其是它们与 N-聚糖的关系。在这里,我们表明拟南芥 EMS 诱变剂 bri1 抑制子 3(EBS3)基因中的一个错义突变抑制了矮化突变体 bri1-9,bri1-9 的表型是由 BRASSINOSTEROID-INSENSITIVE 1(BR1)的 ER 保留和 ERAD 引起的。EBS3 编码酵母天冬酰胺连接糖基化 9(ALG9)的拟南芥同源物,该基因催化在组装三分支 N-聚糖前体[葡萄糖(Glc)](3)(Man)(9)[N-乙酰葡萄糖胺(GlcNAc)](2)时在 ER 腔中添加两个末端α1,2 甘露糖(Man)残基。与最近的发现一致,这些发现揭示了 Glc(3)Man(9)GlcNAc(2)C 分支在产生 ERAD 信号中的重要性,ebs3-1 突变阻止了 Glc(3)Man(9)GlcNAc(2)的组装并抑制了 bri1-9 的 ERAD。相比之下,在 ebs3-1 bri1-9 中过表达 EBS4,EBS4 编码酵母 ALG12 的拟南芥同源物,催化 ER 腔内的α1,6 Man 添加,在 ebs3-1 bri1-9 中积累的截断 N-聚糖前体上添加一个α1,6 Man,促进 bri1-9 的 ERAD,并中和 ebs3-1 抑制表型。此外,T-DNA 插入 alg3-T2 突变导致积累携带不同暴露的α1,6 Man 的更小的 N-聚糖前体,促进 bri1-9 的 ERAD,并增强其矮化。总之,我们的结果强烈表明,拟南芥中标记 ERAD 客户的聚糖信号可能保守为暴露的α1,6 Man 的 N-聚糖。