Suppr超能文献

质膜囊泡中具有可变性质和组成的筏域。

Raft domains of variable properties and compositions in plasma membrane vesicles.

机构信息

Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany.

出版信息

Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11411-6. doi: 10.1073/pnas.1105996108. Epub 2011 Jun 27.

Abstract

Biological membranes are compartmentalized for functional diversity by a variety of specific protein-protein, protein-lipid, and lipid-lipid interactions. A subset of these are the preferential interactions between sterols, sphingolipids, and saturated aliphatic lipid tails responsible for liquid-liquid domain coexistence in eukaryotic membranes, which give rise to dynamic, nanoscopic assemblies whose coalescence is regulated by specific biochemical cues. Microscopic phase separation recently observed in isolated plasma membranes (giant plasma membrane vesicles and plasma membrane spheres) (i) confirms the capacity of compositionally complex membranes to phase separate, (ii) reflects the nanoscopic organization of live cell membranes, and (iii) provides a versatile platform for the investigation of the compositions and properties of the phases. Here, we show that the properties of coexisting phases in giant plasma membrane vesicles are dependent on isolation conditions--namely, the chemicals used to induce membrane blebbing. We observe strong correlations between the relative compositions and orders of the coexisting phases, and their resulting miscibility. Chemically unperturbed plasma membranes reflect these properties and validate the observations in chemically induced vesicles. Most importantly, we observe domains with a continuum of varying stabilities, orders, and compositions induced by relatively small differences in isolation conditions. These results show that, based on the principle of preferential association of raft lipids, domains of various properties can be produced in a membrane environment whose complexity is reflective of biological membranes.

摘要

生物膜通过各种特定的蛋白质-蛋白质、蛋白质-脂质和脂质-脂质相互作用进行功能多样化的分隔。其中一部分是固醇、鞘脂和饱和脂肪酰脂质尾部之间的优先相互作用,这些相互作用负责真核细胞膜中液-液相畴的共存,从而产生动态的、纳米级的组装体,其融合受特定生化信号的调节。最近在分离的质膜(巨大质膜囊泡和质膜球体)中观察到的微观相分离(i)证实了组成复杂的膜具有相分离的能力,(ii)反映了活细胞膜的纳米级组织,(iii)为研究相的组成和性质提供了一个多功能平台。在这里,我们表明,巨大质膜囊泡中共存相的性质取决于分离条件,即用于诱导膜起泡的化学物质。我们观察到共存相的相对组成和顺序及其相互溶解性之间存在很强的相关性。未受化学干扰的质膜反映了这些性质,并验证了化学诱导囊泡中的观察结果。最重要的是,我们观察到在相对较小的分离条件差异下,由稳定性、有序性和组成不断变化的连续域诱导产生。这些结果表明,基于筏脂质优先缔合的原理,可以在类似于生物膜的复杂膜环境中产生具有各种性质的域。

相似文献

1
Raft domains of variable properties and compositions in plasma membrane vesicles.
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11411-6. doi: 10.1073/pnas.1105996108. Epub 2011 Jun 27.
2
Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.
Biochim Biophys Acta. 2012 Jul;1818(7):1777-84. doi: 10.1016/j.bbamem.2012.03.007.
3
Order of lipid phases in model and plasma membranes.
Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16645-50. doi: 10.1073/pnas.0908987106. Epub 2009 Sep 15.
4
Partitioning of membrane molecules between raft and non-raft domains: insights from model-membrane studies.
Biochim Biophys Acta. 2005 Dec 30;1746(3):193-202. doi: 10.1016/j.bbamcr.2005.09.003. Epub 2005 Sep 23.
6
Bile acids modulate signaling by functional perturbation of plasma membrane domains.
J Biol Chem. 2013 Dec 13;288(50):35660-70. doi: 10.1074/jbc.M113.519116. Epub 2013 Oct 28.
7
Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids.
J Lipid Res. 2020 May;61(5):758-766. doi: 10.1194/jlr.RA119000565. Epub 2020 Jan 21.
8
Giant plasma membrane vesicles: models for understanding membrane organization.
Curr Top Membr. 2015;75:25-57. doi: 10.1016/bs.ctm.2015.03.009. Epub 2015 Apr 17.
9
Loss of plasma membrane lipid asymmetry can induce ordered domain (raft) formation.
J Lipid Res. 2022 Jan;63(1):100155. doi: 10.1016/j.jlr.2021.100155. Epub 2021 Nov 26.

引用本文的文献

1
Cholesterol promotes the formation of dimers and oligomers of the receptor tyrosine kinase ROR1.
bioRxiv. 2025 Jun 22:2025.06.19.660507. doi: 10.1101/2025.06.19.660507.
2
Large, recursive membrane platforms are associated to Trop-1, Trop-2, and protein kinase signaling for cell growth.
Mol Biol Cell. 2025 Mar 1;36(3):ar38. doi: 10.1091/mbc.E24-06-0267. Epub 2025 Jan 9.
3
Recent Advancements in Imaging Techniques for Individual Extracellular Vesicles.
Molecules. 2024 Dec 10;29(24):5828. doi: 10.3390/molecules29245828.
4
Cellular Output and Physicochemical Properties of the Membrane-Derived Vesicles Depend on Chemical Stimulants.
ACS Appl Mater Interfaces. 2024 Sep 18;16(37):48982-48992. doi: 10.1021/acsami.4c07234. Epub 2024 Sep 9.
5
Understanding the effects of omega-3 fatty acid supplementation on the physical properties of brain lipid membranes.
iScience. 2024 Jun 24;27(7):110362. doi: 10.1016/j.isci.2024.110362. eCollection 2024 Jul 19.
7
Roles for PMP22 in Schwann cell cholesterol homeostasis in health and disease.
Biochem Soc Trans. 2024 Aug 28;52(4):1747-1756. doi: 10.1042/BST20231359.
8
MαCD-based plasma membrane outer leaflet lipid exchange in mammalian cells to study insulin receptor activity.
Methods Enzymol. 2024;700:485-507. doi: 10.1016/bs.mie.2024.03.027. Epub 2024 Apr 10.
10
Cell Line and Media Composition Influence the Production of Giant Plasma Membrane Vesicles.
ACS Biomater Sci Eng. 2024 Mar 11;10(3):1880-1891. doi: 10.1021/acsbiomaterials.3c01596. Epub 2024 Feb 19.

本文引用的文献

1
Regulation of human EGF receptor by lipids.
Proc Natl Acad Sci U S A. 2011 May 31;108(22):9044-8. doi: 10.1073/pnas.1105666108. Epub 2011 May 13.
2
Minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality.
Biophys J. 2011 Apr 6;100(7):1668-77. doi: 10.1016/j.bpj.2011.02.029.
3
Membrane lipidome of an epithelial cell line.
Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1903-7. doi: 10.1073/pnas.1019267108. Epub 2011 Jan 18.
4
Palmitoylation regulates raft affinity for the majority of integral raft proteins.
Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22050-4. doi: 10.1073/pnas.1016184107. Epub 2010 Dec 3.
5
Revitalizing membrane rafts: new tools and insights.
Nat Rev Mol Cell Biol. 2010 Oct;11(10):688-99. doi: 10.1038/nrm2977.
6
Greasing their way: lipid modifications determine protein association with membrane rafts.
Biochemistry. 2010 Aug 3;49(30):6305-16. doi: 10.1021/bi100882y.
7
A new type of membrane raft-like microdomains and their possible involvement in TCR signaling.
J Immunol. 2010 Apr 1;184(7):3689-96. doi: 10.4049/jimmunol.0902075. Epub 2010 Mar 5.
8
Determinants of specificity at the protein-lipid interface in membranes.
FEBS Lett. 2010 May 3;584(9):1713-20. doi: 10.1016/j.febslet.2009.12.060. Epub 2010 Jan 19.
9
Lipid rafts as a membrane-organizing principle.
Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.
10
TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation.
Nat Immunol. 2010 Jan;11(1):90-6. doi: 10.1038/ni.1832. Epub 2009 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验