Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany.
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11411-6. doi: 10.1073/pnas.1105996108. Epub 2011 Jun 27.
Biological membranes are compartmentalized for functional diversity by a variety of specific protein-protein, protein-lipid, and lipid-lipid interactions. A subset of these are the preferential interactions between sterols, sphingolipids, and saturated aliphatic lipid tails responsible for liquid-liquid domain coexistence in eukaryotic membranes, which give rise to dynamic, nanoscopic assemblies whose coalescence is regulated by specific biochemical cues. Microscopic phase separation recently observed in isolated plasma membranes (giant plasma membrane vesicles and plasma membrane spheres) (i) confirms the capacity of compositionally complex membranes to phase separate, (ii) reflects the nanoscopic organization of live cell membranes, and (iii) provides a versatile platform for the investigation of the compositions and properties of the phases. Here, we show that the properties of coexisting phases in giant plasma membrane vesicles are dependent on isolation conditions--namely, the chemicals used to induce membrane blebbing. We observe strong correlations between the relative compositions and orders of the coexisting phases, and their resulting miscibility. Chemically unperturbed plasma membranes reflect these properties and validate the observations in chemically induced vesicles. Most importantly, we observe domains with a continuum of varying stabilities, orders, and compositions induced by relatively small differences in isolation conditions. These results show that, based on the principle of preferential association of raft lipids, domains of various properties can be produced in a membrane environment whose complexity is reflective of biological membranes.
生物膜通过各种特定的蛋白质-蛋白质、蛋白质-脂质和脂质-脂质相互作用进行功能多样化的分隔。其中一部分是固醇、鞘脂和饱和脂肪酰脂质尾部之间的优先相互作用,这些相互作用负责真核细胞膜中液-液相畴的共存,从而产生动态的、纳米级的组装体,其融合受特定生化信号的调节。最近在分离的质膜(巨大质膜囊泡和质膜球体)中观察到的微观相分离(i)证实了组成复杂的膜具有相分离的能力,(ii)反映了活细胞膜的纳米级组织,(iii)为研究相的组成和性质提供了一个多功能平台。在这里,我们表明,巨大质膜囊泡中共存相的性质取决于分离条件,即用于诱导膜起泡的化学物质。我们观察到共存相的相对组成和顺序及其相互溶解性之间存在很强的相关性。未受化学干扰的质膜反映了这些性质,并验证了化学诱导囊泡中的观察结果。最重要的是,我们观察到在相对较小的分离条件差异下,由稳定性、有序性和组成不断变化的连续域诱导产生。这些结果表明,基于筏脂质优先缔合的原理,可以在类似于生物膜的复杂膜环境中产生具有各种性质的域。