Suppr超能文献

测量和建模 NHS 连续医疗保健中的占用时间。

Measuring and modelling occupancy time in NHS continuing healthcare.

机构信息

Department of Information Systems and Computing, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.

出版信息

BMC Health Serv Res. 2011 Jun 29;11:155. doi: 10.1186/1472-6963-11-155.

Abstract

BACKGROUND

Due to increasing demand and financial constraints, NHS continuing healthcare systems seek to find better ways of forecasting demand and budgeting for care. This paper investigates two areas of concern, namely, how long existing patients stay in service and the number of patients that are likely to be still in care after a period of time.

METHODS

An anonymised dataset containing information for all funded admissions to placement and home care in the NHS continuing healthcare system was provided by 26 (out of 31) London primary care trusts. The data related to 11289 patients staying in placement and home care between 1 April 2005 and 31 May 2008 were first analysed. Using a methodology based on length of stay (LoS) modelling, we captured the distribution of LoS of patients to estimate the probability of a patient staying in care over a period of time. Using the estimated probabilities we forecasted the number of patients that are likely to be still in care after a period of time (e.g. monthly).

RESULTS

We noticed that within the NHS continuing healthcare system there are three main categories of patients. Some patients are discharged after a short stay (few days), some others staying for few months and the third category of patients staying for a long period of time (years). Some variations in proportions of discharge and transition between types of care as well as between care groups (e.g. palliative, functional mental health) were observed. A close agreement of the observed and the expected numbers of patients suggests a good prediction model.

CONCLUSIONS

The model was tested for care groups within the NHS continuing healthcare system in London to support Primary Care Trusts in budget planning and improve their responsiveness to meet the increasing demand under limited availability of resources. Its applicability can be extended to other types of care, such as hospital care and re-ablement. Further work will be geared towards updating the dataset and refining the results.

摘要

背景

由于需求增加和资金限制,英国国民保健制度(NHS)持续医疗保健系统正在寻求更好的方法来预测需求和规划护理预算。本文研究了两个关注领域,即现有患者在服务中的停留时间以及一段时间后仍在护理中的患者数量。

方法

26 个(31 个中的 26 个)伦敦初级保健信托基金提供了一个包含 NHS 持续医疗保健系统中所有资金安置和家庭护理入院信息的匿名数据集。首先分析了 2005 年 4 月 1 日至 2008 年 5 月 31 日期间在安置和家庭护理中停留的 11289 名患者的数据。使用基于逗留时间(LoS)建模的方法,我们捕获了患者逗留时间的分布,以估计患者在一段时间内(例如,每月)留在护理中的概率。使用估计的概率,我们预测了一段时间后仍在护理中的患者数量。

结果

我们注意到,在 NHS 持续医疗保健系统中,有三类主要患者。一些患者在短时间(几天)后出院,另一些患者停留几个月,第三类患者停留很长时间(几年)。观察到出院和护理类型之间以及护理组(例如姑息治疗、功能性心理健康)之间的转变比例存在一些差异。观察到的和预期的患者数量之间的密切一致性表明预测模型良好。

结论

该模型在伦敦的 NHS 持续医疗保健系统的护理组中进行了测试,以支持初级保健信托基金进行预算规划,并在资源有限的情况下提高对不断增长的需求的响应能力。其适用性可以扩展到其他类型的护理,如医院护理和再康复。进一步的工作将致力于更新数据集和完善结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b11/3152883/edf33c60a502/1472-6963-11-155-1.jpg

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验