Suppr超能文献

诺如病毒 GII.4 流行变异株中血凝素-血红细胞抗原结合特异性的结构分析:对新纪元进化的启示。

Structural analysis of histo-blood group antigen binding specificity in a norovirus GII.4 epidemic variant: implications for epochal evolution.

机构信息

Verna Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.

出版信息

J Virol. 2011 Sep;85(17):8635-45. doi: 10.1128/JVI.00848-11. Epub 2011 Jun 29.

Abstract

Susceptibility to norovirus (NoV), a major pathogen of epidemic gastroenteritis, is associated with histo-blood group antigens (HBGAs), which are also cell attachment factors for this virus. GII.4 NoV strains are predominantly associated with worldwide NoV epidemics with a periodic emergence of new variants. The sequence variations in the surface-exposed P domain of the capsid protein resulting in differential HBGA binding patterns and antigenicity are suggested to drive GII.4 epochal evolution. To understand how temporal sequence variations affect the P domain structure and contribute to epochal evolution, we determined the P domain structure of a 2004 variant with ABH and secretor Lewis HBGAs and compared it with the previously determined structure of a 1996 variant. We show that temporal sequence variations do not affect the binding of monofucosyl ABH HBGAs but that they can modulate the binding strength of difucosyl Lewis HBGAs and thus could contribute to epochal evolution by the potentiated targeting of new variants to Lewis-positive, secretor-positive individuals. The temporal variations also result in significant differences in the electrostatic landscapes, likely reflecting antigenic variations. The proximity of some of these changes to the HBGA binding sites suggests the possibility of a coordinated interplay between antigenicity and HBGA binding in epochal evolution. From the observation that the regions involved in the formation of the HBGA binding sites can be conformationally flexible, we suggest a plausible mechanism for how norovirus disassociates from salivary mucin-linked HBGA before reassociating with HBGAs linked to intestinal epithelial cells during its passage through the gastrointestinal tract.

摘要

诺如病毒(NoV)是引起流行性肠胃炎的主要病原体之一,其易感性与组织血型抗原(HBGAs)有关,HBGAs 也是该病毒的细胞附着因子。GII.4 诺如病毒株与全球范围内的 NoV 流行密切相关,并定期出现新的变异株。衣壳蛋白表面暴露的 P 结构域的序列变异导致不同的 HBGA 结合模式和抗原性,被认为是推动 GII.4 时期进化的原因。为了了解时间序列变异如何影响 P 结构域的结构并促进时期进化,我们测定了具有 ABH 和分泌型 Lewis HBGAs 的 2004 年变异株的 P 结构域结构,并将其与之前确定的 1996 年变异株的结构进行了比较。我们表明,时间序列变异不会影响单岩藻糖基 ABH HBGAs 的结合,但可以调节双岩藻糖基 Lewis HBGAs 的结合强度,从而通过新变异株对 Lewis 阳性、分泌型阳性个体的靶向增强来促进时期进化。时间变化还导致静电景观的显著差异,可能反映了抗原变化。这些变化中的一些与 HBGA 结合位点接近,表明在时期进化中抗原性和 HBGA 结合之间可能存在协调作用。从参与形成 HBGA 结合位点的区域的可变性观察,我们提出了一种合理的机制,解释了诺如病毒如何在通过胃肠道的过程中与肠道上皮细胞连接的 HBGAs 重新结合之前,从唾液黏蛋白连接的 HBGA 上解离。

相似文献

2
Human noroviruses' fondness for histo-blood group antigens.
J Virol. 2015 Feb;89(4):2024-40. doi: 10.1128/JVI.02968-14. Epub 2014 Nov 26.
3
Structural analysis of determinants of histo-blood group antigen binding specificity in genogroup I noroviruses.
J Virol. 2014 Jun;88(11):6168-80. doi: 10.1128/JVI.00201-14. Epub 2014 Mar 19.
5
Human Norovirus Neutralized by a Monoclonal Antibody Targeting the Histo-Blood Group Antigen Pocket.
J Virol. 2019 Feb 19;93(5). doi: 10.1128/JVI.02174-18. Print 2019 Mar 1.
6
Mechanisms of GII.4 norovirus persistence in human populations.
PLoS Med. 2008 Feb;5(2):e31. doi: 10.1371/journal.pmed.0050031.
7
Structural analysis of a rabbit hemorrhagic disease virus binding to histo-blood group antigens.
J Virol. 2015 Feb;89(4):2378-87. doi: 10.1128/JVI.02832-14. Epub 2014 Dec 10.
8
Chimeric VLPs with GII.3 P2 domain in a backbone of GII.4 VP1 confers novel HBGA binding ability.
Virus Res. 2016 Sep 15;224:1-5. doi: 10.1016/j.virusres.2016.08.006. Epub 2016 Aug 10.
9
Qualitative and quantitative analysis of the binding of GII.4 norovirus variants onto human blood group antigens.
J Virol. 2011 May;85(9):4057-70. doi: 10.1128/JVI.02077-10. Epub 2011 Feb 23.
10
Structural Basis for Human Norovirus Capsid Binding to Bile Acids.
J Virol. 2019 Jan 4;93(2). doi: 10.1128/JVI.01581-18. Print 2019 Jan 15.

引用本文的文献

2
Genetic diversity of norovirus in Shenzhen Based on continuous surveillance from 2016 to 2022.
Front Cell Infect Microbiol. 2025 Jun 18;15:1593610. doi: 10.3389/fcimb.2025.1593610. eCollection 2025.
3
spp. interacts with human norovirus in clinical samples and impairs its replication on human intestinal enteroids.
Gut Microbes. 2025 Dec;17(1):2469716. doi: 10.1080/19490976.2025.2469716. Epub 2025 Mar 3.
5
Norovirus replication, host interactions and vaccine advances.
Nat Rev Microbiol. 2025 Jun;23(6):385-401. doi: 10.1038/s41579-024-01144-9. Epub 2025 Jan 17.
6
Conformational Flexibility in Capsids Encoded by the .
Viruses. 2024 Nov 26;16(12):1835. doi: 10.3390/v16121835.
7
Development of a broad-spectrum therapeutic Fc-nanobody for human noroviruses.
J Virol. 2024 Jul 23;98(7):e0070724. doi: 10.1128/jvi.00707-24. Epub 2024 Jul 2.
8
Antigenic Characterization of Novel Human Norovirus GII.4 Variants San Francisco 2017 and Hong Kong 2019.
Emerg Infect Dis. 2024 May;30(5):1026-1029. doi: 10.3201/eid3005.231694.
10
Immunogenicity and Blocking Efficacy of Norovirus GII.4 Recombinant P Protein Vaccine.
Vaccines (Basel). 2023 Jun 1;11(6):1053. doi: 10.3390/vaccines11061053.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Qualitative and quantitative analysis of the binding of GII.4 norovirus variants onto human blood group antigens.
J Virol. 2011 May;85(9):4057-70. doi: 10.1128/JVI.02077-10. Epub 2011 Feb 23.
3
Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer.
Science. 2010 Oct 22;330(6003):509-12. doi: 10.1126/science.1191750.
4
Norovirus gastroenteritis, carbohydrate receptors, and animal models.
PLoS Pathog. 2010 Aug 26;6(8):e1000983. doi: 10.1371/journal.ppat.1000983.
5
Genetic and phenotypic characterization of GII-4 noroviruses that circulated during 1987 to 2008.
J Virol. 2010 Sep;84(18):9595-607. doi: 10.1128/JVI.02614-09. Epub 2010 Jun 30.
6
Viral shape-shifting: norovirus evasion of the human immune system.
Nat Rev Microbiol. 2010 Mar;8(3):231-41. doi: 10.1038/nrmicro2296. Epub 2010 Feb 2.
7
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
8
Evolutionary dynamics of GII.4 noroviruses over a 34-year period.
J Virol. 2009 Nov;83(22):11890-901. doi: 10.1128/JVI.00864-09. Epub 2009 Sep 16.
10
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验