Cancer Biology Program and Epigenetics and Progenitor Cells Keystone Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
Cell. 2011 Jul 8;146(1):67-79. doi: 10.1016/j.cell.2011.06.020. Epub 2011 Jun 30.
DNA methylation is a major epigenetic mechanism for gene silencing. Whereas methyltransferases mediate cytosine methylation, it is less clear how unmethylated regions in mammalian genomes are protected from de novo methylation and whether an active demethylating activity is involved. Here, we show that either knockout or catalytic inactivation of the DNA repair enzyme thymine DNA glycosylase (TDG) leads to embryonic lethality in mice. TDG is necessary for recruiting p300 to retinoic acid (RA)-regulated promoters, protection of CpG islands from hypermethylation, and active demethylation of tissue-specific developmentally and hormonally regulated promoters and enhancers. TDG interacts with the deaminase AID and the damage response protein GADD45a. These findings highlight a dual role for TDG in promoting proper epigenetic states during development and suggest a two-step mechanism for DNA demethylation in mammals, whereby 5-methylcytosine and 5-hydroxymethylcytosine are first deaminated by AID to thymine and 5-hydroxymethyluracil, respectively, followed by TDG-mediated thymine and 5-hydroxymethyluracil excision repair.
DNA 甲基化是基因沉默的主要表观遗传机制。虽然甲基转移酶介导胞嘧啶甲基化,但甲基化的哺乳动物基因组区域如何免受从头甲基化的影响以及是否涉及活性去甲基化活性尚不清楚。在这里,我们表明,DNA 修复酶胸腺嘧啶 DNA 糖基化酶(TDG)的敲除或催化失活都会导致小鼠胚胎致死。TDG 对于招募 p300 到视黄酸(RA)调节的启动子、保护 CpG 岛免受过度甲基化以及组织特异性发育和激素调节的启动子和增强子的活性去甲基化是必需的。TDG 与脱氨酶 AID 和损伤反应蛋白 GADD45a 相互作用。这些发现强调了 TDG 在促进发育过程中适当的表观遗传状态中的双重作用,并提出了哺乳动物中 DNA 去甲基化的两步机制,其中 5-甲基胞嘧啶和 5-羟甲基胞嘧啶首先由 AID 脱氨为胸腺嘧啶和 5-羟甲基尿嘧啶,然后由 TDG 介导的胸腺嘧啶和 5-羟甲基尿嘧啶切除修复。