Suppr超能文献

基于 OCT 黄斑厚度图的视野检查估计的耦合参数模型,反之亦然,在青光眼护理中。

Coupled parametric model for estimation of visual field tests based on OCT macular thickness maps, and vice versa, in glaucoma care.

机构信息

Department of Radiology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, United States.

出版信息

Med Image Anal. 2012 Jan;16(1):101-13. doi: 10.1016/j.media.2011.05.012. Epub 2011 May 31.

Abstract

The current standard of care for glaucoma patients consists of functional assessment of vision via visual field (VF) testing, which is sensitive but subjective, time-consuming, and often unreliable. A new imaging technology, Fourier domain optical coherence tomography (OCT), is being introduced to assess the structural characteristics of the macula. This new complementary exam is efficient, objective, and reliable. A complex, but consistent, relationship exists between the structural information provided by macular OCT and the functional information gathered by VF maps. We propose a learning-based framework with the ability to estimate the VF map based on OCT macular thickness measurements as input (and vice versa). Central to this algorithmic framework is a coupled parametric model that captures not only the individual variabilities of the OCT macular thickness measurements and the VF maps, but also their co-dependencies. This model is derived by applying principal component analysis (PCA) to a library consisting of various pairs of OCT and VF maps. The parameters of this coupled model are obtained by solving a linear least squares problem. Next, these estimated parameters are used, in conjunction with the eigenvectors derived from PCA, to compute the estimate. The accuracy of this coupled parametric estimation model was evaluated by performing multiple leave-one-out cross validation experiments.

摘要

目前,青光眼患者的治疗标准包括通过视野 (VF) 测试进行视力的功能评估,该测试具有敏感性但主观性强、耗时且往往不可靠。一种新的成像技术,傅里叶域光学相干断层扫描 (OCT),正被引入来评估黄斑的结构特征。这种新的补充检查是高效、客观和可靠的。黄斑 OCT 提供的结构信息与 VF 图收集的功能信息之间存在复杂但一致的关系。我们提出了一个基于学习的框架,该框架能够基于 OCT 黄斑厚度测量作为输入来估计 VF 图(反之亦然)。该算法框架的核心是一个耦合参数模型,该模型不仅可以捕获 OCT 黄斑厚度测量和 VF 图的个体可变性,还可以捕获它们的相互依赖性。该模型是通过对包含各种 OCT 和 VF 图对的库应用主成分分析 (PCA) 得到的。通过求解线性最小二乘问题获得该耦合模型的参数。然后,使用这些估计的参数以及从 PCA 导出的特征向量来计算估计值。通过执行多次留一交叉验证实验来评估这种耦合参数估计模型的准确性。

相似文献

1
Coupled parametric model for estimation of visual field tests based on OCT macular thickness maps, and vice versa, in glaucoma care.
Med Image Anal. 2012 Jan;16(1):101-13. doi: 10.1016/j.media.2011.05.012. Epub 2011 May 31.
3
Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula.
IEEE Trans Med Imaging. 2010 Jun;29(6):1321-30. doi: 10.1109/TMI.2010.2047023. Epub 2010 Apr 1.
4
Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid with local binary patterns.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):1-9. doi: 10.1007/978-3-642-15705-9_1.
5
Visual Field Prognosis From Macula and Circumpapillary Spectral Domain Optical Coherence Tomography.
Transl Vis Sci Technol. 2024 Jun 3;13(6):10. doi: 10.1167/tvst.13.6.10.
7
Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT.
Ophthalmology. 2021 Nov;128(11):1534-1548. doi: 10.1016/j.ophtha.2021.04.022. Epub 2021 Apr 23.
8
[Macular thickness for glaucoma diagnosis].
Klin Monbl Augenheilkd. 2010 Dec;227(12):981-6. doi: 10.1055/s-0028-1110003. Epub 2010 Mar 24.
10
Macular Diagnostic Ability in OCT for Assessing Glaucoma in High Myopia.
Optom Vis Sci. 2016 Feb;93(2):126-35. doi: 10.1097/OPX.0000000000000776.

引用本文的文献

本文引用的文献

1
Eigenfaces for recognition.
J Cogn Neurosci. 1991 Winter;3(1):71-86. doi: 10.1162/jocn.1991.3.1.71.
2
Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis.
Invest Ophthalmol Vis Sci. 2010 Jan;51(1):217-22. doi: 10.1167/iovs.09-3468. Epub 2009 Aug 13.
4
Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments.
Invest Ophthalmol Vis Sci. 2009 Jul;50(7):3432-7. doi: 10.1167/iovs.08-2970. Epub 2009 Feb 21.
5
Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma.
Invest Ophthalmol Vis Sci. 2008 Jul;49(7):3018-25. doi: 10.1167/iovs.08-1775. Epub 2008 Mar 31.
6
A framework for comparing structural and functional measures of glaucomatous damage.
Prog Retin Eye Res. 2007 Nov;26(6):688-710. doi: 10.1016/j.preteyeres.2007.08.001. Epub 2007 Aug 21.
7
Reproducibility of peripapillary retinal nerve fiber thickness measurements with stratus OCT in glaucomatous eyes.
Ophthalmology. 2008 Apr;115(4):661-666.e4. doi: 10.1016/j.ophtha.2007.05.035. Epub 2007 Aug 13.
8
Structure versus function in glaucoma: an application of a linear model.
Invest Ophthalmol Vis Sci. 2007 Aug;48(8):3662-8. doi: 10.1167/iovs.06-1401.
10
The relationship between nerve fiber layer and perimetry measurements.
Invest Ophthalmol Vis Sci. 2007 Feb;48(2):763-73. doi: 10.1167/iovs.06-0688.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验