Department of Radiology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, United States.
Med Image Anal. 2012 Jan;16(1):101-13. doi: 10.1016/j.media.2011.05.012. Epub 2011 May 31.
The current standard of care for glaucoma patients consists of functional assessment of vision via visual field (VF) testing, which is sensitive but subjective, time-consuming, and often unreliable. A new imaging technology, Fourier domain optical coherence tomography (OCT), is being introduced to assess the structural characteristics of the macula. This new complementary exam is efficient, objective, and reliable. A complex, but consistent, relationship exists between the structural information provided by macular OCT and the functional information gathered by VF maps. We propose a learning-based framework with the ability to estimate the VF map based on OCT macular thickness measurements as input (and vice versa). Central to this algorithmic framework is a coupled parametric model that captures not only the individual variabilities of the OCT macular thickness measurements and the VF maps, but also their co-dependencies. This model is derived by applying principal component analysis (PCA) to a library consisting of various pairs of OCT and VF maps. The parameters of this coupled model are obtained by solving a linear least squares problem. Next, these estimated parameters are used, in conjunction with the eigenvectors derived from PCA, to compute the estimate. The accuracy of this coupled parametric estimation model was evaluated by performing multiple leave-one-out cross validation experiments.
目前,青光眼患者的治疗标准包括通过视野 (VF) 测试进行视力的功能评估,该测试具有敏感性但主观性强、耗时且往往不可靠。一种新的成像技术,傅里叶域光学相干断层扫描 (OCT),正被引入来评估黄斑的结构特征。这种新的补充检查是高效、客观和可靠的。黄斑 OCT 提供的结构信息与 VF 图收集的功能信息之间存在复杂但一致的关系。我们提出了一个基于学习的框架,该框架能够基于 OCT 黄斑厚度测量作为输入来估计 VF 图(反之亦然)。该算法框架的核心是一个耦合参数模型,该模型不仅可以捕获 OCT 黄斑厚度测量和 VF 图的个体可变性,还可以捕获它们的相互依赖性。该模型是通过对包含各种 OCT 和 VF 图对的库应用主成分分析 (PCA) 得到的。通过求解线性最小二乘问题获得该耦合模型的参数。然后,使用这些估计的参数以及从 PCA 导出的特征向量来计算估计值。通过执行多次留一交叉验证实验来评估这种耦合参数估计模型的准确性。