Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA.
Biophys J. 2011 Jul 6;101(1):196-204. doi: 10.1016/j.bpj.2011.05.041.
Proteins are not rigid molecules, but exhibit internal motions on timescales ranging from femto- to milliseconds and beyond. In solution, proteins also experience global translational and rotational motions, sometimes on timescales comparable to those of the internal fluctuations. The possibility that internal and global motions may be directly coupled has intriguing implications, given that enzymes and cell signaling proteins typically associate with binding partners and cellular scaffolds. Such processes alter their global motion and may affect protein function. Here, we present molecular dynamics simulations of extreme case scenarios to examine whether a possible relationship exists. In our model protein, a ubiquitin-like RhoGTPase binding domain of plexin-B1, we removed either internal or global motions. Comparisons with unrestrained simulations show that internal and global motions are not appreciably coupled in this single-domain protein. This lack of coupling is consistent with the observation that the dynamics of water around the protein, which is thought to permit, if not stimulate, internal dynamics, is also largely independent of global motion. We discuss implications of these results for the structure and function of proteins.
蛋白质不是刚性分子,而是在飞秒到毫秒及以上时间尺度上表现出内部运动。在溶液中,蛋白质也会经历全局平移和旋转运动,有时其时间尺度与内部波动相当。鉴于酶和细胞信号转导蛋白通常与结合伴侣和细胞支架相互作用,内部运动和全局运动可能直接相关联,这具有有趣的意义。这些过程会改变它们的全局运动,并可能影响蛋白质的功能。在这里,我们通过分子动力学模拟极端情况来检查是否存在这种可能的关系。在我们的模型蛋白中,即神经丛蛋白-B1 的泛素样 RhoGTPase 结合域,我们去除了内部或全局运动。与无约束模拟的比较表明,在这个单结构域蛋白中,内部和全局运动没有明显的关联。这种缺乏关联与观察结果一致,即认为可以允许(如果不是刺激)内部运动的蛋白质周围水分子的动力学也在很大程度上独立于全局运动。我们讨论了这些结果对蛋白质结构和功能的影响。