Suppr超能文献

阿奇霉素显著调节体外人单核细胞的经典激活。

Azithromycin distinctively modulates classical activation of human monocytes in vitro.

机构信息

GlaxoSmithKline Research Centre Zagreb Limited, Zagreb, Croatia.

出版信息

Br J Pharmacol. 2012 Mar;165(5):1348-60. doi: 10.1111/j.1476-5381.2011.01576.x.

Abstract

BACKGROUND AND PURPOSE

Azithromycin has been reported to modify activation of macrophages towards the M2 phenotype. Here, we have sought to identify the mechanisms underlying this modulatory effect of azithromycin on human monocytes, classically activated in vitro.

EXPERIMENTAL APPROACH

Human blood monocytes were primed with IFN-γ for 24 h and activated with LPS for 24 h. Azithromycin, anti-inflammatory and lysosome-affecting agents were added 2 h before IFN-γ. Cytokine and chemokine expression was determined by quantitative PCR and protein release by ELISA. Signalling molecules were determined by Western blotting and transcription factor activation quantified with a DNA-binding ELISA kit.

KEY RESULTS

Azithromycin (1.5-50 µM) dose-dependently inhibited gene expression and/or release of M1 macrophage markers (CCR7, CXCL 11 and IL-12p70), but enhanced CCL2, without altering TNF-α or IL-6. Azithromycin also enhanced the gene expression and/or release of M2 macrophage markers (IL-10 and CCL18), and the pan-monocyte marker CD163, but inhibited that of CCL22. The Toll-like receptor (TLR) 4 signalling pathway was modulated, down-regulating NF-κB and STAT1 transcription factors. The inhibitory profile of azithromycin differed from that of dexamethasone, the phosphodiesterase-4 inhibitor roflumilast and the p38 kinase inhibitor SB203580 but was similar to that of the lysosomotropic drug chloroquine. Effects of concanamycin and NH4Cl, which also act on lysosomes, differed significantly.

CONCLUSIONS AND IMPLICATIONS

Azithromycin modulated classical activation of human monocytes by inhibition of TLR4-mediated signalling and possible effects on lysosomal function, and generated a mediator expression profile that differs from that of monocyte/macrophage phenotypes so far described.

摘要

背景与目的

阿奇霉素已被报道可调节巨噬细胞向 M2 表型的激活。在此,我们试图确定阿奇霉素对体外经典激活的人单核细胞的这种调节作用的机制。

实验方法

用 IFN-γ 对人血单核细胞进行预刺激 24 小时,然后用 LPS 激活 24 小时。在 IFN-γ 前 2 小时加入阿奇霉素、抗炎和溶酶体影响剂。通过定量 PCR 测定细胞因子和趋化因子的表达,通过 ELISA 测定蛋白释放。通过 Western 印迹测定信号分子,通过 DNA 结合 ELISA 试剂盒定量测定转录因子的激活。

主要结果

阿奇霉素(1.5-50 μM)剂量依赖性地抑制 M1 巨噬细胞标志物(CCR7、CXCL11 和 IL-12p70)的基因表达和/或释放,但增强 CCL2,而不改变 TNF-α 或 IL-6。阿奇霉素还增强了 M2 巨噬细胞标志物(IL-10 和 CCL18)和泛单核细胞标志物 CD163 的基因表达和/或释放,但抑制了 CCL22 的表达。Toll 样受体(TLR)4 信号通路被调节,下调 NF-κB 和 STAT1 转录因子。阿奇霉素的抑制谱与地塞米松、磷酸二酯酶-4 抑制剂罗氟司特和 p38 激酶抑制剂 SB203580 不同,但与溶酶体药物氯喹相似。同样作用于溶酶体的康纳霉素和 NH4Cl 的作用差异显著。

结论和意义

阿奇霉素通过抑制 TLR4 介导的信号转导和可能对溶酶体功能的影响,调节了人单核细胞的经典激活,并产生了与迄今为止描述的单核细胞/巨噬细胞表型不同的介质表达谱。

相似文献

1
Azithromycin distinctively modulates classical activation of human monocytes in vitro.
Br J Pharmacol. 2012 Mar;165(5):1348-60. doi: 10.1111/j.1476-5381.2011.01576.x.
3
SOCS1 regulates the IFN but not NFkappaB pathway in TLR-stimulated human monocytes and macrophages.
J Immunol. 2008 Dec 1;181(11):8018-26. doi: 10.4049/jimmunol.181.11.8018.
4
Sulforaphane suppresses TARC/CCL17 and MDC/CCL22 expression through heme oxygenase-1 and NF-κB in human keratinocytes.
Arch Pharm Res. 2010 Nov;33(11):1867-76. doi: 10.1007/s12272-010-1120-6. Epub 2010 Nov 30.
5
Alternatively Activated (M2) Macrophage Phenotype Is Inducible by Endothelin-1 in Cultured Human Macrophages.
PLoS One. 2016 Nov 15;11(11):e0166433. doi: 10.1371/journal.pone.0166433. eCollection 2016.
8
Azithromycin Polarizes Macrophages to an M2 Phenotype via Inhibition of the STAT1 and NF-κB Signaling Pathways.
J Immunol. 2019 Aug 15;203(4):1021-1030. doi: 10.4049/jimmunol.1801228. Epub 2019 Jul 1.
9
Viral and host factors induce macrophage activation and loss of toll-like receptor tolerance in chronic HCV infection.
Gastroenterology. 2007 Nov;133(5):1627-36. doi: 10.1053/j.gastro.2007.08.003. Epub 2007 Aug 2.
10
Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli.
J Immunol Methods. 2014 Jan 15;402(1-2):76-81. doi: 10.1016/j.jim.2013.11.006. Epub 2013 Nov 21.

引用本文的文献

1
Effects of combined cyclosporin and azithromycin treatment on human mononuclear cells under lipopolysaccharide challenge.
Front Oral Health. 2025 Mar 13;6:1544821. doi: 10.3389/froh.2025.1544821. eCollection 2025.
2
"Pleiotropic" Effects of Antibiotics: New Modulators in Human Diseases.
Antibiotics (Basel). 2024 Dec 4;13(12):1176. doi: 10.3390/antibiotics13121176.
3
Azithromycin Exposure in a 10-Day Window of Myocardial Infarction and Short- and Long-Term Outcomes.
JACC Adv. 2024 Oct 18;3(11):101337. doi: 10.1016/j.jacadv.2024.101337. eCollection 2024 Nov.
4
Effects of Azithromycin on Blood Inflammatory Gene Expression and Cytokine Production in Sarcoidosis.
Lung. 2024 Oct;202(5):683-693. doi: 10.1007/s00408-024-00743-w. Epub 2024 Sep 16.
5
Azithromycin targets the CD27 pathway to modulate CD27hi T-lymphocyte expansion and type-1 effector phenotype.
Front Immunol. 2024 Aug 15;15:1447625. doi: 10.3389/fimmu.2024.1447625. eCollection 2024.
6
Of rodents, research and relationships: a pharmacological odyssey.
Inflammopharmacology. 2024 Aug;32(4):2253-2283. doi: 10.1007/s10787-024-01500-4. Epub 2024 Jun 15.
9
Enhanced infectivity of bovine viral diarrhoea virus (BVDV) in arginase-producing bovine monocyte-derived macrophages.
Virulence. 2024 Dec;15(1):2283899. doi: 10.1080/21505594.2023.2283899. Epub 2025 Jan 22.
10
Azithromycin Protects Retinal Glia Against Oxidative Stress-Induced Morphological Changes, Inflammation, and Cell Death.
ACS Bio Med Chem Au. 2022 Jul 12;2(5):499-508. doi: 10.1021/acsbiomedchemau.2c00013. eCollection 2022 Oct 19.

本文引用的文献

2
Deciphering the complexity of Toll-like receptor signaling.
Cell Mol Life Sci. 2010 Dec;67(24):4109-34. doi: 10.1007/s00018-010-0464-x. Epub 2010 Jul 31.
3
Mechanisms of action and clinical application of macrolides as immunomodulatory medications.
Clin Microbiol Rev. 2010 Jul;23(3):590-615. doi: 10.1128/CMR.00078-09.
4
Alternative activation of macrophages: mechanism and functions.
Immunity. 2010 May 28;32(5):593-604. doi: 10.1016/j.immuni.2010.05.007.
5
Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy.
Mol Immunol. 2010 Apr;47(7-8):1650-60. doi: 10.1016/j.molimm.2010.02.008. Epub 2010 Mar 17.
6
The regulation of IL-10 production by immune cells.
Nat Rev Immunol. 2010 Mar;10(3):170-81. doi: 10.1038/nri2711. Epub 2010 Feb 15.
7
A new strategy for the identification of novel molecules with targeted proresolution of inflammation properties.
J Immunol. 2010 Feb 1;184(3):1516-25. doi: 10.4049/jimmunol.0902866. Epub 2009 Dec 23.
9
Rapid simultaneous determination of apoptosis, necrosis, and viability in sulfur mustard exposed HaCaT cell cultures.
Toxicol Lett. 2009 Dec 15;191(2-3):260-7. doi: 10.1016/j.toxlet.2009.09.008. Epub 2009 Sep 18.
10
Inhibitors of the V0 subunit of the vacuolar H+-ATPase prevent segregation of lysosomal- and secretory-pathway proteins.
J Cell Sci. 2009 Oct 1;122(Pt 19):3542-53. doi: 10.1242/jcs.034298. Epub 2009 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验