Suppr超能文献

基于信息的多元过程中非线性格兰杰因果关系的非均匀嵌入技术检测。

Information-based detection of nonlinear Granger causality in multivariate processes via a nonuniform embedding technique.

作者信息

Faes Luca, Nollo Giandomenico, Porta Alberto

机构信息

Department of Physics and BIOtech, University of Trento, Trento, Italy.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051112. doi: 10.1103/PhysRevE.83.051112. Epub 2011 May 11.

Abstract

We present an approach, framed in information theory, to assess nonlinear causality between the subsystems of a whole stochastic or deterministic dynamical system. The approach follows a sequential procedure for nonuniform embedding of multivariate time series, whereby embedding vectors are built progressively on the basis of a minimization criterion applied to the entropy of the present state of the system conditioned to its past states. A corrected conditional entropy estimator compensating for the biasing effect of single points in the quantized hyperspace is used to guarantee the existence of a minimum entropy rate at which to terminate the procedure. The causal coupling is detected according to the Granger notion of predictability improvement, and is quantified in terms of information transfer. We apply the approach to simulations of deterministic and stochastic systems, showing its superiority over standard uniform embedding. Effects of quantization, data length, and noise contamination are investigated. As practical applications, we consider the assessment of cardiovascular regulatory mechanisms from the analysis of heart period, arterial pressure, and respiration time series, and the investigation of the information flow across brain areas from multichannel scalp electroencephalographic recordings.

摘要

我们提出了一种基于信息论的方法,用于评估整个随机或确定性动力系统子系统之间的非线性因果关系。该方法遵循多元时间序列非均匀嵌入的顺序过程,即根据应用于系统当前状态相对于其过去状态的熵的最小化准则逐步构建嵌入向量。使用一种校正的条件熵估计器来补偿量化超空间中单个点的偏差效应,以确保存在一个最小熵率来终止该过程。根据格兰杰可预测性改进的概念检测因果耦合,并根据信息传递进行量化。我们将该方法应用于确定性和随机系统的模拟,展示了其相对于标准均匀嵌入的优越性。研究了量化、数据长度和噪声污染的影响。作为实际应用,我们考虑通过分析心率、动脉压和呼吸时间序列来评估心血管调节机制,以及通过多通道头皮脑电图记录来研究跨脑区的信息流。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验