Suppr超能文献

Calcium channel effectors are potent non-competitive blockers of acetylcholine receptors.

作者信息

Adam L P, Henderson E G

机构信息

Department of Pharmacology, University of Connecticut Health Center, Farmington 06032.

出版信息

Pflugers Arch. 1990 Jul;416(5):586-93. doi: 10.1007/BF00382694.

Abstract

Nicardipine and other calcium channel effectors (CCEs) were studied for their effects on nicotinic acetylcholine receptor (nAChR) activity. While CCEs had no effect on frog (Rana pipiens) skeletal muscle contractions resulting from nerve stimulation or direct stimulation of the muscle, nicotinic agonist-induced contractures were blocked. Nicardipine did not affect nAChR single-channel open time or amplitude, corroborating data from endplate currents (EPCs); EPC amplitudes and decays were unaffected. All the CCEs tested, however, non-competitively blocked nAChRs. The block of nAChRs resulted in a shortened agonist-induced depolarization and thus a diminished contracture response. An increase in cultured mouse skeletal muscle (C-2) cell single-channel closed times was observed with the intracellular addition of nicardipine, verifying a direct block of nAChRs. Using single-channel analysis, nicardipine's site of action, or at least access to its site of action, was determined to be at the intracellular side of the receptor. A direct action of the CCEs on the nAChR was also shown by their ability to block phencyclidine (PCP) binding to Torpedo nobiliana membranes. All the CCEs blocked specific binding of [3H]-PCP to its binding site on the nAChR-channel complex, with bepridil and nicardipine being the most potent. These data are compatible with a model in which nicardipine and other CCEs, at concentrations which do not alter nAChR channel open time or conductance, block the effects of superfused nicotinic agonist on nAChRs either by stabilizing the formation of the nAChR desensitized state or by effecting a slow channel block.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验