Suppr超能文献

用于自然可转化的泰国伯克霍尔德氏菌和类鼻疽伯克霍尔德氏菌的敲除和拔出重组。

Knockout and pullout recombineering for naturally transformable Burkholderia thailandensis and Burkholderia pseudomallei.

机构信息

Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA.

出版信息

Nat Protoc. 2011 Jul 7;6(8):1085-104. doi: 10.1038/nprot.2011.346.

Abstract

Phage λ-Red proteins are powerful tools for pulling and knocking out chromosomal fragments but have been limited to the γ-proteobacteria. Procedures are described here to easily knock out (KO) and pull out (PO) chromosomal DNA fragments from naturally transformable Burkholderia thailandensis and Burkholderia pseudomallei. This system takes advantage of published compliant counterselectable and selectable markers (sacB, pheS, gat and the arabinose-utilization operon) and λ-Red mutant proteins. pheS-gat (KO) or oriT-ColE1ori-gat-ori1600-rep (PO) PCR fragments are generated with flanking 40- to 45-bp homologies to targeted regions incorporated on PCR primers. One-step recombination is achieved by incubation of the PCR product with cells expressing λ-Red proteins and subsequent selection on glyphosate-containing medium. This procedure takes ~10 d and is advantageous over previously published protocols: (i) smaller PCR products reduce primer numbers and amplification steps, (ii) PO fragments suitable for downstream manipulation in Escherichia coli are obtained and (iii) chromosomal KO increases flexibility for downstream processing.

摘要

噬菌体 λ-Red 蛋白是用于提取和敲除染色体片段的有力工具,但仅限于γ-变形菌。本文介绍了一种简便的方法,可从天然可转化的伯克霍尔德菌和鼻疽伯克霍尔德菌中敲除(KO)和提取(PO)染色体 DNA 片段。该系统利用了已发表的符合要求的可反向选择和可选择标记(sacB、pheS、gat 和阿拉伯糖利用操纵子)和 λ-Red 突变蛋白。pheS-gat(KO)或 oriT-ColE1ori-gat-ori1600-rep(PO)PCR 片段是通过在 PCR 引物上加入侧翼 40-45bp 的同源性来生成针对目标区域的片段。通过将 PCR 产物与表达 λ-Red 蛋白的细胞孵育,并随后在含有草甘膦的培养基上进行选择,可实现一步重组。该过程耗时约 10 天,优于以前发表的方案:(i)较小的 PCR 产物减少了引物数量和扩增步骤,(ii)获得了适合在大肠杆菌中进行下游操作的 PO 片段,(iii)染色体 KO 增加了下游处理的灵活性。

相似文献

3
Genetic tools for allelic replacement in Burkholderia species.
Appl Environ Microbiol. 2008 Jul;74(14):4498-508. doi: 10.1128/AEM.00531-08. Epub 2008 May 23.
4
Targeted mutagenesis of Burkholderia thailandensis and Burkholderia pseudomallei through natural transformation of PCR fragments.
Appl Environ Microbiol. 2008 May;74(10):2985-9. doi: 10.1128/AEM.00030-08. Epub 2008 Feb 29.
5
Genetic tools for select-agent-compliant manipulation of Burkholderia pseudomallei.
Appl Environ Microbiol. 2008 Feb;74(4):1064-75. doi: 10.1128/AEM.02430-07. Epub 2007 Dec 21.
6
Detection and differentiation of Burkholderia pseudomallei, Burkholderia mallei and Burkholderia thailandensis by multiplex PCR.
FEMS Immunol Med Microbiol. 2005 Mar 1;43(3):413-7. doi: 10.1016/j.femsim.2004.10.008.

引用本文的文献

1
CnRed: Efficient, Marker-free Genome Engineering of H16 by Adapted Lambda Red Recombineering.
ACS Synth Biol. 2025 Mar 21;14(3):842-854. doi: 10.1021/acssynbio.4c00757. Epub 2025 Feb 24.
2
Recombineering enables genome mining of novel siderophores in a non-model strain.
Eng Microbiol. 2023 Aug 2;3(3):100106. doi: 10.1016/j.engmic.2023.100106. eCollection 2023 Sep.
3
The emerging role of recombineering in microbiology.
Eng Microbiol. 2023 May 24;3(3):100097. doi: 10.1016/j.engmic.2023.100097. eCollection 2023 Sep.
4
Half a century after their discovery: Structural insights into exonuclease and annealase proteins catalyzing recombineering.
Eng Microbiol. 2023 Sep 22;4(1):100120. doi: 10.1016/j.engmic.2023.100120. eCollection 2024 Mar.
5
TetR-like regulator BP1026B_II1561 controls aromatic amino acid biosynthesis and intracellular pathogenesis in .
Front Microbiol. 2024 Aug 15;15:1441330. doi: 10.3389/fmicb.2024.1441330. eCollection 2024.
6
CRISPR-Associated Transposase for Targeted Mutagenesis in Diverse Proteobacteria.
ACS Synth Biol. 2023 Jul 21;12(7):1989-2003. doi: 10.1021/acssynbio.3c00065. Epub 2023 Jun 27.
7
Recombineering in Non-Model Bacteria.
Curr Protoc. 2022 Dec;2(12):e605. doi: 10.1002/cpz1.605.
8
Engineering of strain E264 serves as a chassis for expression of complex specialized metabolites.
Front Microbiol. 2022 Nov 17;13:1073243. doi: 10.3389/fmicb.2022.1073243. eCollection 2022.
9
Biotechnology approaches for natural product discovery, engineering, and production based on Burkholderia bacteria.
Curr Opin Biotechnol. 2022 Oct;77:102782. doi: 10.1016/j.copbio.2022.102782. Epub 2022 Aug 29.
10
Development and application of an efficient recombineering system for Burkholderia glumae and Burkholderia plantarii.
Microb Biotechnol. 2021 Jul;14(4):1809-1826. doi: 10.1111/1751-7915.13840. Epub 2021 Jun 30.

本文引用的文献

1
Versatile dual-technology system for markerless allele replacement in Burkholderia pseudomallei.
Appl Environ Microbiol. 2009 Oct;75(20):6496-503. doi: 10.1128/AEM.01669-09. Epub 2009 Aug 21.
3
Mutational analysis of Burkholderia thailandensis quorum sensing and self-aggregation.
J Bacteriol. 2009 Oct;191(19):5901-9. doi: 10.1128/JB.00591-09. Epub 2009 Jul 31.
5
In vivo Himar1 transposon mutagenesis of Burkholderia pseudomallei.
Appl Environ Microbiol. 2008 Dec;74(24):7529-35. doi: 10.1128/AEM.01973-08. Epub 2008 Oct 24.
6
Genetic tools for allelic replacement in Burkholderia species.
Appl Environ Microbiol. 2008 Jul;74(14):4498-508. doi: 10.1128/AEM.00531-08. Epub 2008 May 23.
8
Targeted mutagenesis of Burkholderia thailandensis and Burkholderia pseudomallei through natural transformation of PCR fragments.
Appl Environ Microbiol. 2008 May;74(10):2985-9. doi: 10.1128/AEM.00030-08. Epub 2008 Feb 29.
10
Genetic tools for select-agent-compliant manipulation of Burkholderia pseudomallei.
Appl Environ Microbiol. 2008 Feb;74(4):1064-75. doi: 10.1128/AEM.02430-07. Epub 2007 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验