Suppr超能文献

H3.3 在 S 期沉积在着丝粒处,作为 G₁ 期新组装的 CENP-A 的占位符。

H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G₁ phase.

机构信息

Department of Genome Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

出版信息

Nucleus. 2011 Mar-Apr;2(2):146-57. doi: 10.4161/nucl.2.2.15211.

Abstract

Centromeres are key regions of eukaryotic chromosomes that ensure proper chromosome segregation at cell division. In most eukaryotes, centromere identity is defined epigenetically by the presence of a centromeric histone H3 variant CenH3, called CENP-A in humans. How CENP-A is incorporated and reproducibly transmitted during the cell cycle is at the heart of this fundamental epigenetic mechanism. Centromeric DNA is replicated during S phase; however unlike replication-coupled assembly of canonical histones during S phase, newly synthesized CENP-A deposition at centromeres is restricted to a discrete time in late telophase/early G(1). These observations raise an important question: when 'old' CENP-A nucleosomes are segregated at the replication fork, are the resulting 'gaps' maintained until the next G(1), or are they filled by H3 nucleosomes during S phase and replaced by CENP-A in the following G(1)? Understanding such molecular mechanisms is important to reveal the composition/organization of centromeres in mitosis, when the kinetochore forms and functions. Here we investigate centromeric chromatin status during the cell cycle, using the SNAP-tag methodology to visualize old and new histones on extended chromatin fibers in human cells. Our results show that (1) both histone H3 variants H3.1 and H3.3 are deposited at centromeric domains in S phase and (2) there is reduced H3.3 (but not reduced H3.1) at centromeres in G(1) phase compared to S phase. These observations are consistent with a replacement model, where both H3.1 and H3.3 are deposited at centromeres in S phase and 'placeholder' H3.3 is replaced with CENP-A in G(1).

摘要

着丝粒是真核生物染色体的关键区域,可确保细胞分裂时染色体的正确分离。在大多数真核生物中,着丝粒的身份是通过存在着丝粒组蛋白 H3 变体 CenH3(人类中称为 CENP-A)来表观遗传定义的。CENP-A 如何在细胞周期中被掺入并可重复传递是该基本表观遗传机制的核心。着丝粒 DNA 在 S 期复制;然而,与 S 期复制偶联的典型组蛋白组装不同,新合成的 CENP-A 在着丝粒的沉积仅限于末期/早期 G1 期的一个离散时间。这些观察结果提出了一个重要问题:当“旧”CENP-A 核小体在复制叉处分离时,产生的“间隙”是否会一直保持到下一个 G1 期,还是在 S 期被 H3 核小体填充,并在下一个 G1 期被 CENP-A 取代?了解这些分子机制对于揭示有丝分裂时着丝粒的组成/组织非常重要,此时动粒形成并发挥作用。在这里,我们使用 SNAP 标签方法在人类细胞中可视化扩展染色质纤维上的旧和新组蛋白,研究了细胞周期中的着丝粒染色质状态。我们的结果表明:(1)在 S 期,组蛋白 H3 变体 H3.1 和 H3.3 都沉积在着丝粒域上;(2)与 S 期相比,G1 期着丝粒处的 H3.3(但不是 H3.1)减少。这些观察结果与替换模型一致,即在 S 期,H3.1 和 H3.3 都沉积在着丝粒上,并且“占位符”H3.3 在 G1 期被 CENP-A 取代。

相似文献

2
Putting CENP-A in its place.将 CENP-A 置于其位置。
Cell Mol Life Sci. 2013 Feb;70(3):387-406. doi: 10.1007/s00018-012-1048-8. Epub 2012 Jun 23.
7
Centromeric chromatin gets loaded.着丝粒染色质被加载。
J Cell Biol. 2007 Mar 12;176(6):735-6. doi: 10.1083/jcb.200702020. Epub 2007 Mar 5.

引用本文的文献

本文引用的文献

2
Tetrameric organization of vertebrate centromeric nucleosomes.脊椎动物着丝粒核小体的四聚体结构。
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20317-22. doi: 10.1073/pnas.1009563107. Epub 2010 Nov 8.
5
A super-resolution map of the vertebrate kinetochore.脊椎动物动粒的超分辨率图谱。
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10484-9. doi: 10.1073/pnas.1002325107. Epub 2010 May 18.
6
New functions for an old variant: no substitute for histone H3.3.旧变体的新功能:组蛋白 H3.3 无可替代。
Curr Opin Genet Dev. 2010 Apr;20(2):110-7. doi: 10.1016/j.gde.2010.01.003. Epub 2010 Feb 12.
9
Epigenetic inheritance during the cell cycle.细胞周期中的表观遗传继承。
Nat Rev Mol Cell Biol. 2009 Mar;10(3):192-206. doi: 10.1038/nrm2640.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验