Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
J Am Chem Soc. 2011 Aug 17;133(32):12507-17. doi: 10.1021/ja111201c. Epub 2011 Jul 25.
Glycans are expected to be one of the potential signal molecules for controlling drug targeting/delivery or long-term circulation of biopharmaceuticals. However, the effect of the carbohydrates of artificially glycosylated derivatives on in vivo dynamic distribution profiles after intravenous injection of model animals remains unclear due to the lack of standardized methodology and a suitable platform. We report herein an efficient and versatile method for the preparation of multifunctional quantum dots (QDs) displaying common synthetic glycosides with excellent solubility and long-term stability in aqueous solution without loss of quantum yields. Combined use of an aminooxy-terminated thiol derivative, 11,11'-dithio bis[undec-11-yl 12-(aminooxyacetyl)amino hexa(ethyleneglycol)], and a phosphorylcholine derivative, 11-mercaptoundecylphosphorylcholine, provided QDs with novel functions for the chemical ligation of ketone-functionalized compounds and the prevention of nonspecific protein adsorption concurrently. In vivo near-infrared (NIR) fluorescence imaging of phosphorylcholine self-assembled monolayer (SAM)-coated QDs displaying various simple sugars (glyco-PC-QDs) after administration into the tail vein of the mouse revealed that distinct long-term delocalization over 2 h can be achieved in cases of QDs modified with α-sialic acid residue (Neu5Ac-PC-QDs) and control PC-QDs, while QDs bearing other common sugars, such as α-glucose (Glc-PC-QDs), α-mannose (Man-PC-QDs), α-fucose (Fuc-PC-QDs), lactose (Lac-PC-QDs), β-glucuronic acid (GlcA-PC-QDs), N-acetyl-β-D-glucosamine (GlcNAc-PC-QDs), and N-acetyl-β-D-galactosamine (GalNAc-PC-QDs) residues, accumulated rapidly (5-10 min) in the liver. Sequential enzymatic modifications of GlcNAc-PC-QDs gave Galβ1,4GlcNAc-PC-QDs (LacNAc-PC-QDs), Galβ1,4(Fucα1,3)GlcNAc-PC-QDs (Le(x)-PC-QDs), Neu5Acα2,3Galβ1,4GlcNAc-PC-QDs (sialyl LacNAc-PC-QDs), and Neu5Acα2,3Galβ1,4(Fucα1,3)GlcNAc-PC-QDs (sialyl Le(x)-PC-QDs) in quantitative yield as monitored by direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry analyses. Live animal imaging uncovered for the first time that Le(x)-PC-QDs also distributed rapidly in the liver after intravenous injection and almost quenched over 1 h in similar profiles to those of LacNAc-PC-QDs and Lac-PC-QDs. On the other hand, sialyl LacNAc-PC-QDs and sialyl Le(x)-PC-QDs were still retained stably in the whole body after 2 h, while they showed significantly different in vivo dynamics in the tissue distribution, suggesting that structure/sequence of the neighboring sugar residues in the individual sialyl oligosaccharides might influence the final organ-specific distribution. The present results clearly visualize the evidence of an essential role of the terminal sialic acid residue(s) for achieving prolonged in vivo lifetime and biodistribution of various glyco-PC-QDs as a novel class of functional platforms for nanomaterial-based drug targeting/delivery. A standardized protocol using multifunctional PC-QDs should facilitate live animal imaging of ligand-displayed QDs using versatile NIR fluorescence photometry without influence of size-dependent accumulation/excretion pathway for nanoparticles (e.g., viruses) >10 nm in hydrodynamic diameter by the liver.
糖基有望成为控制药物靶向/递送或生物制药长期循环的潜在信号分子之一。然而,由于缺乏标准化的方法和合适的平台,人工糖基化衍生物的碳水化合物对模型动物静脉注射后体内动态分布特征的影响仍不清楚。我们在此报告了一种高效、通用的方法,用于制备多功能量子点(QD),展示常见的合成糖苷,具有优异的水溶性和长期稳定性,在水溶液中量子产率不会损失。使用末端氨基氧基硫醇衍生物 11,11'-二硫代双[十一基 12-(氨基氧基乙酰基)氨基己(乙二醇)]和磷酰胆碱衍生物 11-巯基十一烷基磷酰胆碱的组合,为酮功能化化合物的化学连接和同时防止非特异性蛋白质吸附提供了具有新功能的 QD。静脉内近红外(NIR)荧光成像显示,在尾静脉注射后,带有各种简单糖(糖基-PC-QD)的磷酰胆碱自组装单层(SAM)涂层的 QD 能够在修饰有 α-唾液酸残基(Neu5Ac-PC-QD)和对照 PC-QD 的情况下实现长达 2 小时的明显长时间定位,而带有其他常见糖的 QD,例如 α-葡萄糖(Glc-PC-QD)、α-甘露糖(Man-PC-QD)、α-岩藻糖(Fuc-PC-QD)、乳糖(Lac-PC-QD)、β-葡萄糖醛酸(GlcA-PC-QD)、N-乙酰-β-D-葡萄糖胺(GlcNAc-PC-QD)和 N-乙酰-β-D-半乳糖胺(GalNAc-PC-QD)残基,在肝脏中迅速(5-10 分钟)积累。GlcNAc-PC-QD 的连续酶修饰得到 Galβ1,4GlcNAc-PC-QD(LacNAc-PC-QD)、Galβ1,4(Fucα1,3)GlcNAc-PC-QD(Le(x)-PC-QD)、Neu5Acα2,3Galβ1,4GlcNAc-PC-QD(唾液酸 LacNAc-PC-QD)和 Neu5Acα2,3Galβ1,4(Fucα1,3)GlcNAc-PC-QD(唾液酸 Le(x)-PC-QD),定量产率通过直接基质辅助激光解吸电离飞行时间质谱分析监测。活体动物成像首次揭示了 Le(x)-PC-QD 在静脉注射后也迅速在肝脏中分布,并且在类似的曲线中几乎在 1 小时内被淬灭,与 LacNAc-PC-QD 和 Lac-PC-QD 相似。另一方面,唾液酸 LacNAc-PC-QD 和唾液酸 Le(x)-PC-QD 在 2 小时后仍在全身稳定保留,而它们在组织分布中的体内动力学有明显不同,这表明单个唾液酸化寡糖中相邻糖残基的结构/序列可能影响最终的器官特异性分布。本研究结果清楚地证明了末端唾液酸残基对于实现各种糖基-PC-QD 的延长体内寿命和生物分布至关重要,这是一种新型的基于纳米材料的药物靶向/递送功能平台。使用多功能 PC-QD 的标准化方案应有助于使用各种近红外荧光光度法对配体显示的 QD 进行活体动物成像,而不会影响大于 10nm 水动力直径的纳米颗粒(例如病毒)的大小依赖性积累/排泄途径对肝脏的影响。