Suppr超能文献

微流控 PCR 在即时检测传染病诊断中的进展。

Advances in microfluidic PCR for point-of-care infectious disease diagnostics.

机构信息

Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.

出版信息

Biotechnol Adv. 2011 Nov-Dec;29(6):830-9. doi: 10.1016/j.biotechadv.2011.06.017. Epub 2011 Jun 30.

Abstract

Global burdens from existing or emerging infectious diseases emphasize the need for point-of-care (POC) diagnostics to enhance timely recognition and intervention. Molecular approaches based on PCR methods have made significant inroads by improving detection time and accuracy but are still largely hampered by resource-intensive processing in centralized laboratories, thereby precluding their routine bedside- or field-use. Microfluidic technologies have enabled miniaturization of PCR processes onto a chip device with potential benefits including speed, cost, portability, throughput, and automation. In this review, we provide an overview of recent advances in microfluidic PCR technologies and discuss practical issues and perspectives related to implementing them into infectious disease diagnostics.

摘要

现有的或新兴传染病给全球带来的负担,强调了即时检测(POC)诊断的必要性,以增强对疾病的及时识别和干预。基于 PCR 方法的分子方法通过提高检测时间和准确性取得了重大进展,但仍在很大程度上受到集中式实验室资源密集型处理的阻碍,从而排除了其在床边或现场的常规使用。微流控技术已将 PCR 过程小型化到芯片设备上,具有速度快、成本低、便携、高通量和自动化等潜在优势。在这篇综述中,我们概述了微流控 PCR 技术的最新进展,并讨论了将其应用于传染病诊断的实际问题和前景。

相似文献

1
Advances in microfluidic PCR for point-of-care infectious disease diagnostics.
Biotechnol Adv. 2011 Nov-Dec;29(6):830-9. doi: 10.1016/j.biotechadv.2011.06.017. Epub 2011 Jun 30.
2
Microfluidic platform towards point-of-care diagnostics in infectious diseases.
J Chromatogr A. 2015 Jan 16;1377:13-26. doi: 10.1016/j.chroma.2014.12.041. Epub 2014 Dec 18.
3
Infectious pathogens meet point-of-care diagnostics.
Biosens Bioelectron. 2018 May 30;106:193-203. doi: 10.1016/j.bios.2018.02.007. Epub 2018 Feb 3.
4
Evidence-based point-of-care diagnostics: current status and emerging technologies.
Annu Rev Anal Chem (Palo Alto Calif). 2013;6:191-211. doi: 10.1146/annurev-anchem-062012-092641. Epub 2013 Mar 20.
5
Point-of-care testing and molecular diagnostics: miniaturization required.
Clin Lab Med. 2009 Sep;29(3):555-60. doi: 10.1016/j.cll.2009.06.013.
6
Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics.
Lab Chip. 2012 Sep 21;12(18):3249-66. doi: 10.1039/c2lc40630f. Epub 2012 Aug 2.
7
Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics.
Adv Biochem Eng Biotechnol. 2022;179:247-265. doi: 10.1007/10_2020_127.
8
Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches.
Biosensors (Basel). 2023 May 27;13(6):584. doi: 10.3390/bios13060584.
9
Emerging technologies in point-of-care molecular diagnostics for resource-limited settings.
Expert Rev Mol Diagn. 2014 Jun;14(5):525-34. doi: 10.1586/14737159.2014.915748. Epub 2014 May 2.
10
Advances in microfluidics in combating infectious diseases.
Biotechnol Adv. 2016 Jul-Aug;34(4):404-421. doi: 10.1016/j.biotechadv.2016.02.002. Epub 2016 Feb 13.

引用本文的文献

1
Infectious disease diagnostic device using rapid and efficient qPCR assays on a multi-target chip: idream-qPCR.
Microsyst Nanoeng. 2025 Jul 15;11(1):143. doi: 10.1038/s41378-025-00972-w.
3
Polymerase Chain Reaction Chips for Biomarker Discovery and Validation in Drug Development.
Micromachines (Basel). 2025 Feb 20;16(3):243. doi: 10.3390/mi16030243.
5
Advancements of paper-based sensors for antibiotic-resistant bacterial species identification.
NPJ Biosens. 2024;1(1):17. doi: 10.1038/s44328-024-00016-9. Epub 2024 Dec 13.
6
Optimizing Microfluidic Channel Design with High-Performance Materials for Safe Neonatal Drug Delivery.
Recent Adv Drug Deliv Formul. 2024;18(4):294-303. doi: 10.2174/0126673878292962240718055526.
7
Biochemically Programmable Isothermal PCR.
Adv Sci (Weinh). 2024 Nov;11(41):e2404688. doi: 10.1002/advs.202404688. Epub 2024 Sep 13.
8
Mobile Diagnostic Clinics.
ACS Sens. 2024 Jun 28;9(6):2777-2792. doi: 10.1021/acssensors.4c00636. Epub 2024 May 22.
10
Reviewing the state of biosensors and lab-on-a- chip technologies: opportunities for extreme environments and space exploration.
Front Microbiol. 2023 Aug 17;14:1215529. doi: 10.3389/fmicb.2023.1215529. eCollection 2023.

本文引用的文献

1
Point-of-care diagnostics: market trends and growth drivers.
Expert Opin Med Diagn. 2009 Jan;3(1):1-4. doi: 10.1517/17530050802651579.
2
A unified platform for optoelectrowetting and optoelectronic tweezers.
Lab Chip. 2011 Apr 7;11(7):1292-7. doi: 10.1039/c0lc00568a. Epub 2011 Feb 11.
3
A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification.
Lab Chip. 2011 Feb 7;11(3):398-406. doi: 10.1039/c0lc00296h. Epub 2010 Nov 3.
5
An all-in-one microfluidic device for parallel DNA extraction and gene analysis.
Biomed Microdevices. 2010 Dec;12(6):1043-9. doi: 10.1007/s10544-010-9458-6.
6
Centrifugal microfluidics for biomedical applications.
Lab Chip. 2010 Jul 21;10(14):1758-73. doi: 10.1039/b924109d. Epub 2010 May 28.
7
How antibiotics kill bacteria: from targets to networks.
Nat Rev Microbiol. 2010 Jun;8(6):423-35. doi: 10.1038/nrmicro2333. Epub 2010 May 4.
8
High-performance single cell genetic analysis using microfluidic emulsion generator arrays.
Anal Chem. 2010 Apr 15;82(8):3183-90. doi: 10.1021/ac902683t.
9
Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
Chem Soc Rev. 2010 Mar;39(3):1153-82. doi: 10.1039/b820557b. Epub 2010 Jan 25.
10
Ultrahigh-throughput screening in drop-based microfluidics for directed evolution.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4004-9. doi: 10.1073/pnas.0910781107. Epub 2010 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验