Department of Computer Science, Johns Hopkins University, Baltimore, MD 21205-2109, USA.
Int J Comput Assist Radiol Surg. 2012 Jan;7(1):159-73. doi: 10.1007/s11548-011-0636-7. Epub 2011 Jul 9.
PURPOSE: A system architecture has been developed for integration of intraoperative 3D imaging [viz., mobile C-arm cone-beam CT (CBCT)] with surgical navigation (e.g., trackers, endoscopy, and preoperative image and planning data). The goal of this paper is to describe the architecture and its handling of a broad variety of data sources in modular tool development for streamlined use of CBCT guidance in application-specific surgical scenarios. METHODS: The architecture builds on two proven open-source software packages, namely the cisst package (Johns Hopkins University, Baltimore, MD) and 3D Slicer (Brigham and Women's Hospital, Boston, MA), and combines data sources common to image-guided procedures with intraoperative 3D imaging. Integration at the software component level is achieved through language bindings to a scripting language (Python) and an object-oriented approach to abstract and simplify the use of devices with varying characteristics. The platform aims to minimize offline data processing and to expose quantitative tools that analyze and communicate factors of geometric precision online. Modular tools are defined to accomplish specific surgical tasks, demonstrated in three clinical scenarios (temporal bone, skull base, and spine surgery) that involve a progressively increased level of complexity in toolset requirements. RESULTS: The resulting architecture (referred to as "TREK") hosts a collection of modules developed according to application-specific surgical tasks, emphasizing streamlined integration with intraoperative CBCT. These include multi-modality image display; 3D-3D rigid and deformable registration to bring preoperative image and planning data to the most up-to-date CBCT; 3D-2D registration of planning and image data to real-time fluoroscopy; infrared, electromagnetic, and video-based trackers used individually or in hybrid arrangements; augmented overlay of image and planning data in endoscopic or in-room video; and real-time "virtual fluoroscopy" computed from GPU-accelerated digitally reconstructed radiographs (DRRs). Application in three preclinical scenarios (temporal bone, skull base, and spine surgery) demonstrates the utility of the modular, task-specific approach in progressively complex tasks. CONCLUSIONS: The design and development of a system architecture for image-guided surgery has been reported, demonstrating enhanced utilization of intraoperative CBCT in surgical applications with vastly different requirements. The system integrates C-arm CBCT with a broad variety of data sources in a modular fashion that streamlines the interface to application-specific tools, accommodates distinct workflow scenarios, and accelerates testing and translation of novel toolsets to clinical use. The modular architecture was shown to adapt to and satisfy the requirements of distinct surgical scenarios from a common code-base, leveraging software components arising from over a decade of effort within the imaging and computer-assisted interventions community.
目的:已经开发了一种系统架构,用于将术中 3D 成像(例如移动 C 臂锥形束 CT(CBCT))与手术导航(例如跟踪器、内窥镜以及术前图像和规划数据)集成。本文的目的是描述该架构及其在模块化工具开发中的处理方式,这些工具可简化特定于应用的手术场景中 CBCT 引导的使用。
方法:该架构基于两个经过验证的开源软件包,即 cisst 包(马里兰州巴尔的摩市约翰霍普金斯大学)和 3D Slicer(马萨诸塞州波士顿市布莱根妇女医院),并将图像引导程序中常见的数据源与术中 3D 成像相结合。通过语言绑定到脚本语言(Python)以及面向对象的方法,在软件组件级别实现集成,从而抽象和简化了具有不同特性的设备的使用。该平台旨在最大程度地减少离线数据处理,并公开用于在线分析和传达几何精度因素的定量工具。定义了模块化工具来完成特定的手术任务,在三个临床场景(颞骨、颅底和脊柱手术)中进行了演示,这些场景涉及工具集要求的复杂程度逐渐增加。
结果:所得到的架构(称为“TREK”)承载了根据特定于应用的手术任务开发的一组模块,强调与术中 CBCT 的简化集成。这些模块包括多模态图像显示;将术前图像和规划数据与最新的 CBCT 进行 3D-3D 刚性和可变形配准;将规划和图像数据与实时荧光透视进行 3D-2D 配准;单独或混合使用红外、电磁和视频跟踪器;在内窥镜或室内视频中叠加图像和规划数据;以及从 GPU 加速的数字重建射线照相术(DRR)实时计算“虚拟荧光透视”。在三个临床前场景(颞骨、颅底和脊柱手术)中的应用证明了模块化、特定于任务的方法在逐渐复杂的任务中的实用性。
结论:已经报告了用于图像引导手术的系统架构的设计和开发,证明了在具有截然不同要求的手术应用中,术中 CBCT 的利用率得到了提高。该系统以模块化方式将 C 臂 CBCT 与各种数据源集成在一起,从而简化了与特定于应用的工具的接口,适应了不同的工作流程场景,并加快了新型工具集的测试和转化为临床应用。模块化架构被证明能够适应和满足来自同一代码库的不同手术场景的要求,利用了成像和计算机辅助干预领域十多年来努力产生的软件组件。
Int J Comput Assist Radiol Surg. 2011-7-9
Int J Comput Assist Radiol Surg. 2012-4-27
Int Forum Allergy Rhinol. 2011-2-8
Int J Comput Assist Radiol Surg. 2015-8
Proc SPIE Int Soc Opt Eng. 2011-2
Int J Comput Assist Radiol Surg. 2012-5-15
Proc SPIE Int Soc Opt Eng. 2012-2
J Med Imaging (Bellingham). 2022-7
IEEE Trans Med Robot Bionics. 2022-2
J Med Imaging (Bellingham). 2021-5
Proc SPIE Int Soc Opt Eng. 2020-2
J Med Imaging (Bellingham). 2018-4
J Med Imaging (Bellingham). 2018-4
Int J Comput Assist Radiol Surg. 2017-8-29
Med Image Comput Comput Assist Interv. 2009-1-1
J Xray Sci Technol. 2009
Int J Med Robot. 2009-12
Annu Int Conf IEEE Eng Med Biol Soc. 2008
J Otolaryngol Head Neck Surg. 2008-2
Comput Med Imaging Graph. 2008-4
Comput Med Imaging Graph. 2007-3