Suppr超能文献

CFTR 氯离子通道孔跨膜区的对齐。

Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.

机构信息

Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada.

出版信息

J Gen Physiol. 2011 Aug;138(2):165-78. doi: 10.1085/jgp.201110605. Epub 2011 Jul 11.

Abstract

Different transmembrane (TM) α helices are known to line the pore of the cystic fibrosis TM conductance regulator (CFTR) Cl(-) channel. However, the relative alignment of these TMs in the three-dimensional structure of the pore is not known. We have used patch-clamp recording to investigate the accessibility of cytoplasmically applied cysteine-reactive reagents to cysteines introduced along the length of the pore-lining first TM (TM1) of a cysteine-less variant of CFTR. We find that methanethiosulfonate (MTS) reagents irreversibly modify cysteines substituted for TM1 residues K95, Q98, P99, and L102 when applied to the cytoplasmic side of open channels. Residues closer to the intracellular end of TM1 (Y84-T94) were not apparently modified by MTS reagents, suggesting that this part of TM1 does not line the pore. None of the internal MTS reagent-reactive cysteines was modified by extracellular [2-(trimethylammonium)ethyl] MTS. Only K95C, closest to the putative intracellular end of TM1, was apparently modified by intracellular [2-sulfonatoethyl] MTS before channel activation. Comparison of these results with recent work on CFTR-TM6 suggests a relative alignment of these two important TMs along the axis of the pore. This alignment was tested experimentally by formation of disulfide bridges between pairs of cysteines introduced into these two TMs. Currents carried by the double mutants K95C/I344C and Q98C/I344C, but not by the corresponding single-site mutants, were inhibited by the oxidizing agent copper(II)-o-phenanthroline. This inhibition was irreversible on washing but could be reversed by the reducing agent dithiothreitol, suggesting disulfide bond formation between the introduced cysteine side chains. These results allow us to develop a model of the relative positions, functional contributions, and alignment of two important TMs lining the CFTR pore. Such functional information is necessary to understand and interpret the three-dimensional structure of the pore.

摘要

不同的跨膜(TM)α 螺旋已知排列在囊性纤维化跨膜电导调节剂(CFTR)Cl(-)通道的孔中。然而,这些 TM 在孔的三维结构中的相对排列尚不清楚。我们使用膜片钳记录来研究细胞质中应用的半胱氨酸反应性试剂对 CFTR 无半胱氨酸变体的孔衬第一 TM(TM1)中沿长度引入的半胱氨酸的可及性。我们发现,当应用于开放通道的细胞质侧时,甲硫磺酸(MTS)试剂不可逆地修饰取代 TM1 残基 K95、Q98、P99 和 L102 的半胱氨酸。靠近 TM1 细胞内端的残基(Y84-T94)显然没有被 MTS 试剂修饰,这表明这部分 TM1 不排列在孔中。内部 MTS 试剂反应性半胱氨酸中没有一个被细胞外 [2-(三甲基铵)乙基] MTS 修饰。只有靠近 TM1 假设的细胞内端的 K95C,在通道激活之前,显然被细胞内 [2-磺基乙基] MTS 修饰。将这些结果与最近关于 CFTR-TM6 的工作进行比较,表明这两个重要 TM 沿着孔的轴的相对排列。通过将引入这两个 TM 中的成对半胱氨酸形成二硫键来实验测试这种排列。双突变体 K95C/I344C 和 Q98C/I344C 产生的电流,但相应的单突变体没有,被氧化剂铜(II)-邻菲啰啉抑制。这种抑制在洗涤时是不可逆的,但可以被还原剂二硫苏糖醇逆转,这表明引入的半胱氨酸侧链之间形成了二硫键。这些结果使我们能够开发一个模型,用于排列 CFTR 孔衬里的两个重要 TM 的相对位置、功能贡献和排列。这种功能信息对于理解和解释孔的三维结构是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c04/3149817/025c779292a7/JGP_201110605_GS_Fig1.jpg

相似文献

1
Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
J Gen Physiol. 2011 Aug;138(2):165-78. doi: 10.1085/jgp.201110605. Epub 2011 Jul 11.
5
Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.
J Membr Biol. 2009 Apr;228(3):151-64. doi: 10.1007/s00232-009-9167-3. Epub 2009 Apr 19.
7
The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway.
Biochemistry. 2015 Jun 23;54(24):3839-50. doi: 10.1021/acs.biochem.5b00427. Epub 2015 Jun 10.
8
Relative contribution of different transmembrane segments to the CFTR chloride channel pore.
Pflugers Arch. 2014 Mar;466(3):477-90. doi: 10.1007/s00424-013-1317-x. Epub 2013 Aug 20.
9
Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating.
Biochim Biophys Acta. 2012 Mar;1818(3):851-60. doi: 10.1016/j.bbamem.2011.12.025. Epub 2012 Jan 2.

引用本文的文献

2
CFTR Modulators: From Mechanism to Targeted Therapeutics.
Handb Exp Pharmacol. 2024;283:219-247. doi: 10.1007/164_2022_597.
3
The molecular evolution of function in the CFTR chloride channel.
J Gen Physiol. 2021 Dec 6;153(12). doi: 10.1085/jgp.202012625. Epub 2021 Oct 14.
5
Positional effects of premature termination codons on the biochemical and biophysical properties of CFTR.
J Physiol. 2020 Feb;598(3):517-541. doi: 10.1113/JP278418. Epub 2019 Nov 2.
6
Discovering the chloride pathway in the CFTR channel.
Cell Mol Life Sci. 2020 Feb;77(4):765-778. doi: 10.1007/s00018-019-03211-4. Epub 2019 Jul 20.
7
Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore.
Cell Mol Life Sci. 2019 Jun;76(12):2411-2423. doi: 10.1007/s00018-019-03043-2. Epub 2019 Feb 13.
8
Functional characterization reveals that zebrafish CFTR prefers to occupy closed channel conformations.
PLoS One. 2018 Dec 31;13(12):e0209862. doi: 10.1371/journal.pone.0209862. eCollection 2018.
9
Structure of Transmembrane Helix 8 and Possible Membrane Defects in CFTR.
Biophys J. 2018 Apr 24;114(8):1751-1754. doi: 10.1016/j.bpj.2018.03.003.
10
Structural mechanisms of CFTR function and dysfunction.
J Gen Physiol. 2018 Apr 2;150(4):539-570. doi: 10.1085/jgp.201711946. Epub 2018 Mar 26.

本文引用的文献

1
Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
J Gen Physiol. 2010 Sep;136(3):293-309. doi: 10.1085/jgp.201010480.
5
Molecular models of the open and closed states of the whole human CFTR protein.
Cell Mol Life Sci. 2009 Nov;66(21):3469-86. doi: 10.1007/s00018-009-0133-0. Epub 2009 Aug 26.
7
Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate.
Br J Pharmacol. 2009 Jul;157(6):1065-71. doi: 10.1111/j.1476-5381.2009.00258.x. Epub 2009 May 19.
8
Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.
J Membr Biol. 2009 Apr;228(3):151-64. doi: 10.1007/s00232-009-9167-3. Epub 2009 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验