University of Kentucky, Lexington, KY 40546-0312, USA.
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12260-5. doi: 10.1073/pnas.1106222108. Epub 2011 Jul 11.
Botryococcene biosynthesis is thought to resemble that of squalene, a metabolite essential for sterol metabolism in all eukaryotes. Squalene arises from an initial condensation of two molecules of farnesyl diphosphate (FPP) to form presqualene diphosphate (PSPP), which then undergoes a reductive rearrangement to form squalene. In principle, botryococcene could arise from an alternative rearrangement of the presqualene intermediate. Because of these proposed similarities, we predicted that a botryococcene synthase would resemble squalene synthase and hence isolated squalene synthase-like genes from Botryococcus braunii race B. While B. braunii does harbor at least one typical squalene synthase, none of the other three squalene synthase-like (SSL) genes encodes for botryococcene biosynthesis directly. SSL-1 catalyzes the biosynthesis of PSPP and SSL-2 the biosynthesis of bisfarnesyl ether, while SSL-3 does not appear able to directly utilize FPP as a substrate. However, when combinations of the synthase-like enzymes were mixed together, in vivo and in vitro, robust botryococcene (SSL-1+SSL-3) or squalene biosynthesis (SSL1+SSL-2) was observed. These findings were unexpected because squalene synthase, an ancient and likely progenitor to the other Botryococcus triterpene synthases, catalyzes a two-step reaction within a single enzyme unit without intermediate release, yet in B. braunii, these activities appear to have separated and evolved interdependently for specialized triterpene oil production greater than 500 MYA. Coexpression of the SSL-1 and SSL-3 genes in different configurations, as independent genes, as gene fusions, or targeted to intracellular membranes, also demonstrate the potential for engineering even greater efficiencies of botryococcene biosynthesis.
人们认为,瓶霉烯醇的生物合成类似于角鲨烯的生物合成,角鲨烯是所有真核生物固醇代谢所必需的代谢物。角鲨烯由两个法呢基二磷酸(FPP)分子的初始缩合形成前鲨烯二磷酸(PSPP),然后经历还原重排形成角鲨烯。原则上,瓶霉烯醇可以由前鲨烯中间体的替代重排产生。由于这些提议的相似性,我们预测瓶霉烯醇合酶类似于角鲨烯合酶,因此从 Botryococcus braunii 种 B 中分离出角鲨烯合酶样基因。虽然 B. braunii 至少含有一种典型的角鲨烯合酶,但其他三种角鲨烯合酶样(SSL)基因中没有一种直接编码瓶霉烯醇生物合成。SSL-1 催化 PSPP 的生物合成,SSL-2 催化双法呢基醚的生物合成,而 SSL-3 似乎不能直接将 FPP 用作底物。然而,当类似的合酶组合在一起时,无论是在体内还是体外,都观察到了强大的瓶霉烯醇(SSL-1+SSL-3)或角鲨烯生物合成(SSL1+SSL-2)。这些发现出人意料,因为角鲨烯合酶是其他 Botryococcus 三萜类合成酶的古老且可能的前体,在单个酶单位内催化两步反应,而没有中间释放,但在 B. braunii 中,这些活性似乎已经分离并独立进化,以专门生产超过 5000 万年的三萜类油。以不同的构型、作为独立基因、基因融合或靶向细胞内膜共表达 SSL-1 和 SSL-3 基因,也证明了工程设计甚至更高的瓶霉烯醇生物合成效率的潜力。