Suppr超能文献

2D 和 3D BOLD fMRI 数据在 7T 下的复杂幅度预处理。

Complex and magnitude-only preprocessing of 2D and 3D BOLD fMRI data at 7 T.

机构信息

Vanderbilt University Institute of Imaging Science, Nashville, Tennessee 37232-2310, USA.

出版信息

Magn Reson Med. 2012 Mar;67(3):867-71. doi: 10.1002/mrm.23072. Epub 2011 Jul 11.

Abstract

A challenge to ultra high field functional magnetic resonance imaging is the predominance of noise associated with physiological processes unrelated to tasks of interest. This degradation in data quality may be partially reversed using a series of preprocessing algorithms designed to retrospectively estimate and remove the effects of these noise sources. However, such algorithms are routinely validated only in isolation, and thus consideration of their efficacies within realistic preprocessing pipelines and on different data sets is often overlooked. We investigate the application of eight possible combinations of three pseudo-complementary preprocessing algorithms - phase regression, Stockwell transform filtering, and retrospective image correction - to suppress physiological noise in 2D and 3D functional data at 7 T. The performance of each preprocessing pipeline was evaluated using data-driven metrics of reproducibility and prediction. The optimal preprocessing pipeline for both 2D and 3D functional data included phase regression, Stockwell transform filtering, and retrospective image correction. This result supports the hypothesis that a complex preprocessing pipeline is preferable to a magnitude-only pipeline, and suggests that functional magnetic resonance imaging studies should retain complex images and externally monitor subjects' respiratory and cardiac cycles so that these supplementary data may be used to retrospectively reduce noise and enhance overall data quality.

摘要

超高场功能磁共振成像面临的一个挑战是,与感兴趣的任务无关的生理过程相关的噪声占主导地位。使用一系列旨在回顾性估计和消除这些噪声源影响的预处理算法,可以部分逆转这种数据质量的下降。然而,这些算法通常仅在孤立的情况下进行常规验证,因此,在实际预处理管道和不同数据集上考虑它们的功效往往被忽视。我们研究了在 7T 下,2D 和 3D 功能数据中三种伪互补预处理算法(相位回归、斯托克韦尔变换滤波和回顾性图像校正)的八种可能组合在抑制生理噪声方面的应用。使用可重复性和预测性的数据驱动指标评估每个预处理管道的性能。对于 2D 和 3D 功能数据,最优的预处理管道都包括相位回归、斯托克韦尔变换滤波和回顾性图像校正。这一结果支持了这样一种假设,即复杂的预处理管道优于仅幅度的管道,并且表明功能磁共振成像研究应该保留复杂的图像,并对外监测受试者的呼吸和心脏周期,以便可以使用这些补充数据来回顾性地降低噪声并提高整体数据质量。

相似文献

引用本文的文献

2
Advances in High-Field BOLD fMRI.高场强血氧水平依赖性功能磁共振成像的进展
Materials (Basel). 2011 Nov 2;4(11):1941-1955. doi: 10.3390/ma4111941.
3
Methods for cleaning the BOLD fMRI signal.清洗BOLD功能磁共振成像信号的方法。
Neuroimage. 2017 Jul 1;154:128-149. doi: 10.1016/j.neuroimage.2016.12.018. Epub 2016 Dec 9.

本文引用的文献

1
NMR Fourier zeugmatography. 1975.核磁共振傅里叶成像。1975年。
J Magn Reson. 2011 Dec;213(2):495-509. doi: 10.1016/j.jmr.2011.09.019.
7
Three dimensional echo-planar imaging at 7 Tesla.7 特斯拉下的三维回波平面成像。
Neuroimage. 2010 May 15;51(1):261-6. doi: 10.1016/j.neuroimage.2010.01.108. Epub 2010 Feb 6.
8
Layer-specific BOLD activation in human V1.人类 V1 层特异性的 BOLD 激活
Hum Brain Mapp. 2010 Sep;31(9):1297-304. doi: 10.1002/hbm.20936.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验