文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

大脑组织如何塑造经颅磁刺激产生的电场。

How the brain tissue shapes the electric field induced by transcranial magnetic stimulation.

机构信息

High-Field Magnetic Resonance Centre, MPI for Biological Cybernetics, Tübingen, Germany.

出版信息

Neuroimage. 2011 Oct 1;58(3):849-59. doi: 10.1016/j.neuroimage.2011.06.069. Epub 2011 Jul 1.


DOI:10.1016/j.neuroimage.2011.06.069
PMID:21749927
Abstract

In transcranial magnetic stimulation (TMS), knowledge of the distribution of the induced electric field is fundamental for a better understanding of the position and extent of the stimulated brain region. However, the different tissue types and the varying fibre orientation in the brain tissue result in an inhomogeneous and anisotropic conductivity distribution and distort the electric field in a non-trivial way. Here, the field induced by a figure-8 coil is characterized in detail using finite element calculations and a geometrically accurate model of an individual head combined with high-resolution diffusion-weighted imaging for conductivity mapping. It is demonstrated that the field strength is significantly enhanced when the currents run approximately perpendicular to the local gyral orientation. Importantly, the spatial distribution of this effect differs distinctly between gray matter (GM) and white matter (WM): While the field in GM is selectively enhanced at the gyral crowns and lips, high field strengths can still occur rather deep in WM. Taking the anisotropy of brain tissue into account tends to further boost this effect in WM, but not in GM. Spatial variations in the WM anisotropy affect the local field strength in a systematic way and result in localized increases of up to 40% (on average ~7% for coil orientations perpendicular to the underlying gyri). We suggest that these effects might create hot spots in WM that might contribute to the excitation of WM structures by TMS. However, our results also demonstrate the necessity of using realistic nerve models in the future to allow for more definitive conclusions.

摘要

在经颅磁刺激(TMS)中,了解感应电场的分布对于更好地理解刺激脑区的位置和范围至关重要。然而,大脑组织中的不同组织类型和纤维方向的变化导致了不均匀和各向异性的电导率分布,并以一种非平凡的方式扭曲了电场。在这里,使用有限元计算和个体头部的几何精确模型以及用于电导率映射的高分辨率扩散加权成像详细描述了 8 字形线圈产生的场。结果表明,当电流大致垂直于局部脑回方向时,场强会显著增强。重要的是,这种效应的空间分布在灰质(GM)和白质(WM)之间明显不同:虽然 GM 中的场在脑回冠部和唇部得到选择性增强,但在 WM 中仍能产生较高的场强。考虑到脑组织的各向异性会进一步增强 WM 中的这种效应,但不会增强 GM。WM 各向异性的空间变化以系统的方式影响局部场强,并导致局部增加高达 40%(对于垂直于下伏脑回的线圈方向,平均约为 7%)。我们认为这些效应可能在 WM 中产生热点,从而有助于 TMS 对 WM 结构的激发。然而,我们的结果也表明,未来有必要使用真实的神经模型来得出更明确的结论。

相似文献

[1]
How the brain tissue shapes the electric field induced by transcranial magnetic stimulation.

Neuroimage. 2011-7-1

[2]
Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation.

Neuroimage. 2010-8-1

[3]
Diffusion tensor MRI-based estimation of the influence of brain tissue anisotropy on the effects of transcranial magnetic stimulation.

Neuroimage. 2007-7-15

[4]
Assessment of electric field distribution in anisotropic cortical and subcortical regions under the influence of tDCS.

Bioelectromagnetics. 2014-1

[5]
Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS.

Comput Methods Programs Biomed. 2012-10-4

[6]
Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex.

Neuroimage. 2013-5-1

[7]
The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy.

IEEE Trans Biomed Eng. 2003-9

[8]
Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model.

Phys Med Biol. 2012-10-9

[9]
Transcranial magnetic stimulation in heterogeneous brain tissue: clinical impact on focality, reproducibility and true sham stimulation.

J Psychiatr Res. 2009-1

[10]
Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling.

Neuroimage. 2006-4-15

引用本文的文献

[1]
[Research progress on combined transcranial electromagnetic stimulation in clinical application in brain diseases].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025-8-25

[2]
The effect of brain tissue anisotropy on the electric field caused by transcranial electric stimulation: Sensitivity analysis and magnetic resonance electrical impedance tomography.

Imaging Neurosci (Camb). 2025-2-26

[3]
Systematic cross-species comparison of prefrontal cortex functional networks targeted via transcranial magnetic stimulation.

Imaging Neurosci (Camb). 2024-7-24

[4]
Electric field variations across DLPFC targeting methods in TMS therapy for Alzheimer's disease.

Neuroimage Clin. 2025-7-17

[5]
Overlap in the cortical representation of hand and forearm muscles as assessed by navigated TMS.

Neuroimage Rep. 2023-9-5

[6]
Cortical fold geometry modulates transcranial magnetic stimulation electric field strength and peak displacement.

Sci Rep. 2025-6-3

[7]
Comprehensive evaluation of U-Net based transcranial magnetic stimulation electric field estimations.

Sci Rep. 2025-4-9

[8]
Personalized models of Beam/F3 targeting in transcranial magnetic stimulation for depression: Implications for precision clinical translation.

Brain Stimul. 2025

[9]
The right posterior parietal cortex mediates spatial reorienting of attentional choice bias.

Nat Commun. 2024-8-13

[10]
Quasistatic approximation in neuromodulation.

J Neural Eng. 2024-7-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索