Department of Biomedical Engineering, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea.
Phys Med Biol. 2012 Nov 7;57(21):6961-80. doi: 10.1088/0031-9155/57/21/6961. Epub 2012 Oct 9.
To establish safe and efficient transcranial direct current stimulation (tDCS), it is of particular importance to understand the electrical effects of tDCS in the brain. Since the current density (CD) and electric field (EF) in the brain generated by tDCS depend on various factors including complex head geometries and electrical tissue properties, in this work, we investigated the influence of anisotropic conductivity in the skull and white matter (WM) on tDCS via a 3D anatomically realistic finite element head model. We systematically incorporated various anisotropic conductivity ratios into the skull and WM. The effects of anisotropic tissue conductivity on the CD and EF were subsequently assessed through comparisons to the conventional isotropic solutions. Our results show that the anisotropic skull conductivity significantly affects the CD and EF distribution: there is a significant reduction in the ratio of the target versus non-target total CD and EF on the order of 12-14%. In contrast, the WM anisotropy does not significantly influence the CD and EF on the targeted cortical surface, only on the order of 1-3%. However, the WM anisotropy highly alters the spatial distribution of both the CD and EF inside the brain. This study shows that it is critical to incorporate anisotropic conductivities in planning of tDCS for improved efficacy and safety.
为了建立安全有效的经颅直流电刺激(tDCS),了解 tDCS 在大脑中的电效应尤为重要。由于 tDCS 在大脑中产生的电流密度(CD)和电场(EF)取决于包括复杂头部几何形状和电组织特性在内的各种因素,在这项工作中,我们通过一个 3D 解剖学上逼真的有限元头部模型研究了颅骨和白质(WM)各向异性电导率对 tDCS 的影响。我们系统地将各种各向异性电导率比纳入颅骨和 WM 中。随后,通过与传统各向同性解的比较来评估各向异性组织电导率对 CD 和 EF 的影响。我们的结果表明,颅骨各向异性电导率显著影响 CD 和 EF 的分布:目标与非目标总 CD 和 EF 的比值显著降低了 12-14%。相比之下,WM 各向异性对目标皮质表面的 CD 和 EF 没有显著影响,只有 1-3%左右。然而,WM 各向异性极大地改变了大脑内 CD 和 EF 的空间分布。这项研究表明,在 tDCS 规划中考虑各向异性电导率对于提高疗效和安全性至关重要。