School of Chemistry, The University of Sydney, NSW, Australia.
Dalton Trans. 2011 Nov 28;40(44):11675-86. doi: 10.1039/c1dt10380f. Epub 2011 Jul 13.
The current status and likely future directions of complexes of V(V/IV), Cr(III), Mo(VI), W(VI), Zn(II), Cu(II), and Mn(III) as potential oral drugs against type 2 diabetes are reviewed. We propose a unified model of extra- and intracellular mechanisms of anti-diabetic efficacies of V(V/IV), Mo(VI), W(VI), and Cr(III), centred on high-oxidation-state oxido/peroxido species that inhibit protein tyrosine phosphatases (PTPs) involved in insulin signalling. The postulated oxidative mechanism of anti-diabetic activity of Cr(III) via carcinogenic Cr(VI/V) (which adds to safety concerns) is consistent with recent clinical trials on Cr(III) picolinate, where activity was apparent only in patients with poorly controlled diabetes (high oxidative stress), and the correlation between the anti-diabetic activities and ease of oxidation of Cr(III) supplements and their metabolites in vivo. Zn(II) and Cu(II) anti-diabetics act via different mechanisms and are unlikely to be used as specific anti-diabetics due to their diverse and unpredictable biological activities. Hence, future research directions are likely to centre on enhancing the bioavailability and selectivity of V(V/IV), Mo(VI), or W(VI) drugs. The strategy of potentiating circulating insulin with metal ions has distinct therapeutic advantages over interventions that stimulate the release of more insulin, or use insulin mimetics, because of many adverse side-effects of increased levels of insulin, including increased risks of cancer and cardiovascular diseases.
目前 V(V/IV)、Cr(III)、Mo(VI)、W(VI)、Zn(II)、Cu(II) 和 Mn(III) 配合物作为潜在的 2 型糖尿病口服药物的现状和可能的未来方向进行了综述。我们提出了一个统一的模型,用于解释 V(V/IV)、Mo(VI)、W(VI) 和 Cr(III) 的抗糖尿病疗效的细胞内外机制,其中心是高氧化态的氧代/过氧物种,这些物种可以抑制参与胰岛素信号转导的蛋白酪氨酸磷酸酶 (PTPs)。Cr(III)通过致癌的 Cr(VI/V)发挥抗糖尿病活性的氧化机制(这增加了安全问题)与最近关于 Cr(III) picolinate 的临床试验一致,在这些试验中,只有在糖尿病控制不佳(氧化应激高)的患者中才观察到活性,并且抗糖尿病活性与 Cr(III)补充剂及其代谢物在体内的氧化难易程度之间存在相关性。Zn(II)和 Cu(II) 抗糖尿病药物通过不同的机制起作用,由于其多样化和不可预测的生物活性,不太可能作为特定的抗糖尿病药物使用。因此,未来的研究方向可能集中在提高 V(V/IV)、Mo(VI) 或 W(VI) 药物的生物利用度和选择性上。与刺激释放更多胰岛素或使用胰岛素模拟物的干预措施相比,用金属离子增强循环胰岛素的策略具有明显的治疗优势,因为胰岛素水平升高会导致许多不良反应,包括癌症和心血管疾病风险增加。