Department of Neurochemistry and Molecular Biology, and Research Group Molecular Physiology, Leibniz Institute for Neurobiology, D-39118 Magdeburg, Germany.
J Neurosci. 2011 Jul 13;31(28):10189-200. doi: 10.1523/JNEUROSCI.2088-11.2011.
Global changes of activity in neuronal networks induce homeostatic adaptations of synaptic strengths, which involve functional remodeling of both presynaptic and postsynaptic apparatuses. Despite considerable advances in understanding cellular properties of homeostatic synaptic plasticity, the underlying molecular mechanisms are not fully understood. Here, we explored the hypothesis that adaptive homeostatic adjustment of presynaptic efficacy involves molecular remodeling of the release apparatus including the presynaptic cytomatrix, which spatially and functionally coordinates neurotransmitter release. We found significant downregulation of cellular expression levels of presynaptic scaffolding proteins Bassoon, Piccolo, ELKS/CAST, Munc13, RIM, liprin-α, and synapsin upon prolonged (48 h) activity depletion in rat neuronal cultures. This was accompanied by a general reduction of Bassoon, Piccolo, ELKS/CAST, Munc13, and synapsin levels at synaptic sites. Interestingly, RIM was upregulated in a subpopulation of synapses. At the level of individual synapses, RIM quantities correlated well with synaptic activity, and a constant relationship between RIM levels and synaptic activity was preserved upon silencing. Silencing also induced synaptic enrichment of other previously identified regulators of presynaptic release probability, i.e., synaptotagmin1, SV2B, and P/Q-type calcium channels. Seeking responsible cellular mechanisms, we revealed a complex role of the ubiquitin-proteasome system in the functional presynaptic remodeling and enhanced degradation rates of Bassoon and liprin-α upon silencing. Together, our data indicate a significant molecular reorganization of the presynaptic release apparatus during homeostatic adaptation to network inactivity and identify RIM, synaptotagmin1, Ca(v)2.1, and SV2B as molecular candidates underlying the main silencing-induced functional hallmark at presynapse, i.e., increase of neurotransmitter release probability.
神经元网络活动的全球变化诱导突触强度的稳态适应,这涉及到突触前和突触后装置的功能重塑。尽管在理解稳态突触可塑性的细胞特性方面取得了相当大的进展,但潜在的分子机制仍不完全清楚。在这里,我们假设,突触前效能的适应性稳态调节涉及包括突触前细胞基质在内的释放装置的分子重塑,该细胞基质在空间和功能上协调神经递质的释放。我们发现,在大鼠神经元培养物中,长时间(48 小时)的活性耗竭会导致突触前支架蛋白 Bassoon、Piccolo、ELKS/CAST、Munc13、RIM、liprin-α和 synapsin 的细胞表达水平显著下调。这伴随着突触部位 Bassoon、Piccolo、ELKS/CAST、Munc13 和 synapsin 水平的普遍降低。有趣的是,RIM 在突触的亚群中上调。在单个突触的水平上,RIM 的数量与突触活动密切相关,并且在沉默时,RIM 水平和突触活动之间的恒定关系得以保留。沉默也诱导了其他先前鉴定的突触前释放概率调节剂,即 synaptotagmin1、SV2B 和 P/Q 型钙通道,在突触中的富集。为了寻找负责的细胞机制,我们揭示了泛素-蛋白酶体系统在功能突触重塑中的复杂作用,以及沉默时 Bassoon 和 liprin-α 的降解速率增强。总之,我们的数据表明,在网络失活的稳态适应过程中,突触前释放装置发生了显著的分子重组,并确定 RIM、synaptotagmin1、Ca(v)2.1 和 SV2B 作为沉默诱导的突触前主要功能特征的分子候选物,即神经递质释放概率的增加。