Della Santina Charles C, Migliaccio Americo A, Hayden Russell, Melvin Thuy-Ahn, Fridman Gene Y, Chiang Bryce, Davidovics Natan S, Dai Chenkai, Carey John P, Minor Lloyd B, Anderson Iee-Ching, Park Hongju, Lyford-Pike Sofia, Tang Shan
Cochlear Implants Int. 2010 Sep;11 Suppl 2(Suppl 2):2-11. doi: 10.1179/146701010X12726366068454.
Bilateral loss of vestibular sensation can disable individuals whose vestibular hair cells are injured by ototoxic medications, infection, Ménière's disease or other insults to the labyrinth including surgical trauma during cochlear implantation. Without input to vestibulo-ocular and vestibulo-spinal reflexes that normally stabilize the eyes and body, affected patients suffer blurred vision during head movement, postural instability, and chronic disequilibrium. While individuals with some residual sensation often compensate for their loss through rehabilitation exercises, those who fail to do so are left with no adequate treatment options. An implantable neuroelectronic vestibular prosthesis that emulates the normal labyrinth by sensing head movement and modulating activity on appropriate branches of the vestibular nerve could significantly improve quality of life for these otherwise chronically dizzy patients. This brief review describes the impact and current management of bilateral loss of vestibular sensation, animal studies supporting the feasibility of prosthetic vestibular stimulation, and a vestibular prosthesis designed to restore sensation of head rotation in all directions. Similar to a cochlear implant in concept and size, the Johns Hopkins Multichannel Vestibular Prosthesis (MVP) includes miniature gyroscopes to sense head rotation, a microcontroller to process inputs and control stimulus timing, and current sources switched between pairs of electrodes implanted within the vestibular labyrinth. In rodents and rhesus monkeys rendered bilaterally vestibulardeficient via treatment with gentamicin and/or plugging of semicircular canals, the MVP partially restores the vestibulo-ocular reflex for head rotations about any axis of rotation in 3-dimensional space. Our efforts now focus on addressing issues prerequisite to human implantation, including refinement of electrode designs and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimization of stimulus protocols, and reduction of device size and power consumption.
双侧前庭感觉丧失会使个体丧失能力,这些个体的前庭毛细胞因耳毒性药物、感染、梅尼埃病或其他对迷路的损伤(包括人工耳蜗植入期间的手术创伤)而受损。由于正常情况下稳定眼睛和身体的前庭眼反射和前庭脊髓反射无法获得输入,受影响的患者在头部运动时会出现视力模糊、姿势不稳和慢性平衡失调。虽然有一些残余感觉的个体通常通过康复锻炼来代偿其丧失的功能,但那些未能做到的人则没有足够的治疗选择。一种可植入的神经电子前庭假体,通过感知头部运动并调节前庭神经适当分支上的活动来模拟正常迷路,可显著改善这些长期头晕患者的生活质量。这篇简短综述描述了双侧前庭感觉丧失的影响和当前治疗方法、支持假体前庭刺激可行性的动物研究,以及一种旨在恢复全方位头部旋转感觉的前庭假体。与人工耳蜗在概念和尺寸上相似,约翰霍普金斯多通道前庭假体(MVP)包括用于感知头部旋转的微型陀螺仪、用于处理输入和控制刺激时机的微控制器,以及在植入前庭迷路内的电极对之间切换的电流源。在用庆大霉素治疗和/或堵塞半规管导致双侧前庭功能缺失的啮齿动物和恒河猴中,MVP部分恢复了在三维空间中绕任何旋转轴进行头部旋转时的前庭眼反射。我们目前的工作重点是解决人类植入前的先决问题,包括改进电极设计和手术技术以提高刺激选择性并保留耳蜗功能、优化刺激方案,以及减小设备尺寸和功耗。