Suppr超能文献

具有不变对象交互先验的图割:在椎间盘分割中的应用。

Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation.

作者信息

Ben Ayed Ismail, Punithakumar Kumaradevan, Garvin Gregory, Romano Walter, Li Shuo

机构信息

GE Healthcare, London, ON, Canada.

出版信息

Inf Process Med Imaging. 2011;22:221-32. doi: 10.1007/978-3-642-22092-0_19.

Abstract

This study investigates novel object-interaction priors for graph cut image segmentation with application to intervertebral disc delineation in magnetic resonance (MR) lumbar spine images. The algorithm optimizes an original cost function which constrains the solution with learned prior knowledge about the geometric interactions between different objects in the image. Based on a global measure of similarity between distributions, the proposed priors are intrinsically invariant with respect to translation and rotation. We further introduce a scale variable from which we derive an original fixed-point equation (FPE), thereby achieving scale-invariance with only few fast computations. The proposed priors relax the need of costly pose estimation (or registration) procedures and large training sets (we used a single subject for training), and can tolerate shape deformations, unlike template-based priors. Our formulation leads to an NP-hard problem which does not afford a form directly amenable to graph cut optimization. We proceeded to a relaxation of the problem via an auxiliary function, thereby obtaining a nearly real-time solution with few graph cuts. Quantitative evaluations over 60 intervertebral discs acquired from 10 subjects demonstrated that the proposed algorithm yields a high correlation with independent manual segmentations by an expert. We further demonstrate experimentally the invariance of the proposed geometric attributes. This supports the fact that a single subject is sufficient for training our algorithm, and confirms the relevance of the proposed priors to disc segmentation.

摘要

本研究探讨了用于图割图像分割的新型对象交互先验,并将其应用于磁共振(MR)腰椎图像中的椎间盘描绘。该算法优化了一个原始成本函数,该函数利用关于图像中不同对象之间几何交互的先验知识来约束解决方案。基于分布之间的全局相似性度量,所提出的先验在平移和旋转方面本质上是不变的。我们进一步引入一个尺度变量,并由此推导出一个原始的不动点方程(FPE),从而仅通过少量快速计算就实现了尺度不变性。与基于模板的先验不同,所提出的先验放宽了对昂贵的姿态估计(或配准)过程和大型训练集(我们使用单个受试者进行训练)的需求,并且能够容忍形状变形。我们的公式导致一个NP难问题,该问题没有直接适用于图割优化的形式。我们通过一个辅助函数对问题进行松弛,从而通过少量图割获得了近实时的解决方案。对从10名受试者获取的60个椎间盘进行的定量评估表明,所提出的算法与专家的独立手动分割具有高度相关性。我们还通过实验证明了所提出的几何属性的不变性。这支持了单个受试者足以训练我们的算法这一事实,并证实了所提出的先验对椎间盘分割的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验