Varoquaux Gael, Gramfort Alexandre, Pedregosa Fabian, Michel Vincent, Thirion Bertrand
INSERM U992, Cognitive Neuroimaging Unit, Saclay, France.
Inf Process Med Imaging. 2011;22:562-73. doi: 10.1007/978-3-642-22092-0_46.
Fluctuations in brain on-going activity can be used to reveal its intrinsic functional organization. To mine this information, we give a new hierarchical probabilistic model for brain activity patterns that does not require an experimental design to be specified. We estimate this model in the dictionary learning framework, learning simultaneously latent spatial maps and the corresponding brain activity time-series. Unlike previous dictionary learning frameworks, we introduce an explicit difference between subject-level spatial maps and their corresponding population-level maps, forming an atlas. We give a novel algorithm using convex optimization techniques to solve efficiently this problem with non-smooth penalties well-suited to image denoising. We show on simulated data that it can recover population-level maps as well as subject specificities. On resting-state fMRI data, we extract the first atlas of spontaneous brain activity and show how it defines a subject-specific functional parcellation of the brain in localized regions.
大脑持续活动的波动可用于揭示其内在功能组织。为挖掘此信息,我们给出了一种新的用于大脑活动模式的分层概率模型,该模型无需指定实验设计。我们在字典学习框架中估计此模型,同时学习潜在空间图谱和相应的大脑活动时间序列。与先前的字典学习框架不同,我们在个体水平的空间图谱与其相应的群体水平图谱之间引入了明确差异,形成了一个图谱集。我们给出了一种使用凸优化技术的新颖算法,以有效地解决这个带有非常适合图像去噪的非光滑惩罚项的问题。我们在模拟数据上表明,它可以恢复群体水平图谱以及个体特异性。在静息态功能磁共振成像数据上,我们提取了自发脑活动的首个图谱集,并展示了它如何在局部区域定义大脑的个体特异性功能分区。