Suppr超能文献

在其功能几何学中学习一种认知过程的图谱。

Learning an atlas of a cognitive process in its functional geometry.

作者信息

Langs Georg, Lashkari Danial, Sweet Andrew, Tie Yanmei, Rigolo Laura, Golby Alexandra J, Golland Polina

机构信息

Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Inf Process Med Imaging. 2011;22:135-46. doi: 10.1007/978-3-642-22092-0_12.

Abstract

In this paper we construct an atlas that captures functional characteristics of a cognitive process from a population of individuals. The functional connectivity is encoded in a low-dimensional embedding space derived from a diffusion process on a graph that represents correlations of fMRI time courses. The atlas is represented by a common prior distribution for the embedded fMRI signals of all subjects. The atlas is not directly coupled to the anatomical space, and can represent functional networks that are variable in their spatial distribution. We derive an algorithm for fitting this generative model to the observed data in a population. Our results in a language fMRI study demonstrate that the method identifies coherent and functionally equivalent regions across subjects.

摘要

在本文中,我们构建了一个图谱,该图谱从一群个体中捕捉认知过程的功能特征。功能连接性编码在一个低维嵌入空间中,该空间源自对表示功能磁共振成像(fMRI)时间序列相关性的图上的扩散过程。该图谱由所有受试者嵌入的fMRI信号的共同先验分布表示。该图谱不直接与解剖空间耦合,并且可以表示其空间分布可变的功能网络。我们推导了一种算法,用于将这种生成模型拟合到群体中的观测数据。我们在一项语言fMRI研究中的结果表明,该方法能够识别不同受试者之间连贯且功能等效的区域。

相似文献

1
Learning an atlas of a cognitive process in its functional geometry.
Inf Process Med Imaging. 2011;22:135-46. doi: 10.1007/978-3-642-22092-0_12.
2
Deformable atlas for multi-structure segmentation.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):743-50. doi: 10.1007/978-3-642-40811-3_93.
3
Probabilistic brain atlas encoding using Bayesian inference.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):704-11. doi: 10.1007/11866565_86.
4
Bayesian estimation of regularization and atlas building in diffeomorphic image registration.
Inf Process Med Imaging. 2013;23:37-48. doi: 10.1007/978-3-642-38868-2_4.
5
Face recognition using face-ARG matching.
IEEE Trans Pattern Anal Mach Intell. 2005 Dec;27(12):1982-8. doi: 10.1109/TPAMI.2005.243.
6
Optimal data-driven sparse parameterization of diffeomorphisms for population analysis.
Inf Process Med Imaging. 2011;22:123-34. doi: 10.1007/978-3-642-22092-0_11.
7
MRI tissue classification with neighborhood statistics: a nonparametric, entropy-minimizing approach.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):517-25. doi: 10.1007/11566489_64.
8
Groupwise combined segmentation and registration for atlas construction.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):532-40. doi: 10.1007/978-3-540-75757-3_65.
9
Statistical and topological atlas based brain image segmentation.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):94-101. doi: 10.1007/978-3-540-75757-3_12.
10
Bayesian estimation of probabilistic atlas for anatomically-informed functional MRI group analyses.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):592-9. doi: 10.1007/978-3-642-40760-4_74.

引用本文的文献

2
Joint embedding: A scalable alignment to compare individuals in a connectivity space.
Neuroimage. 2020 Nov 15;222:117232. doi: 10.1016/j.neuroimage.2020.117232. Epub 2020 Aug 7.
3
Diffeomorphic functional brain surface alignment: Functional demons.
Neuroimage. 2017 Aug 1;156:456-465. doi: 10.1016/j.neuroimage.2017.04.028. Epub 2017 Apr 14.
4
Situating the default-mode network along a principal gradient of macroscale cortical organization.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12574-12579. doi: 10.1073/pnas.1608282113. Epub 2016 Oct 18.
5
Decoupling function and anatomy in atlases of functional connectivity patterns: language mapping in tumor patients.
Neuroimage. 2014 Dec;103:462-475. doi: 10.1016/j.neuroimage.2014.08.029. Epub 2014 Aug 27.

本文引用的文献

1
Functional Geometry Alignment and Localization of Brain Areas.
Adv Neural Inf Process Syst. 2010;1:1225-1233.
2
Brain mechanisms in early language acquisition.
Neuron. 2010 Sep 9;67(5):713-27. doi: 10.1016/j.neuron.2010.08.038.
3
Cerebral reorganization as a function of linguistic recovery in children: An fMRI study.
Cortex. 2011 Feb;47(2):202-16. doi: 10.1016/j.cortex.2009.12.003. Epub 2009 Dec 29.
4
Discovering structure in the space of fMRI selectivity profiles.
Neuroimage. 2010 Apr 15;50(3):1085-98. doi: 10.1016/j.neuroimage.2009.12.106. Epub 2010 Jan 4.
5
Bayesian analysis of neuroimaging data in FSL.
Neuroimage. 2009 Mar;45(1 Suppl):S173-86. doi: 10.1016/j.neuroimage.2008.10.055. Epub 2008 Nov 13.
6
Task-specific functional brain geometry from model maps.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):925-33. doi: 10.1007/978-3-540-85988-8_110.
7
The brain's default network: anatomy, function, and relevance to disease.
Ann N Y Acad Sci. 2008 Mar;1124:1-38. doi: 10.1196/annals.1440.011.
8
Divide and conquer: a defense of functional localizers.
Neuroimage. 2006 May 1;30(4):1088-96; discussion 1097-9. doi: 10.1016/j.neuroimage.2005.12.062. Epub 2006 Apr 24.
9
Detection of signal synchronizations in resting-state fMRI datasets.
Neuroimage. 2006 Jan 1;29(1):321-7. doi: 10.1016/j.neuroimage.2005.06.054. Epub 2005 Aug 29.
10
Reorganization of human cerebral cortex: the range of changes following use and injury.
Neuroscientist. 2004 Apr;10(2):129-41. doi: 10.1177/1073858403262111.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验