Suppr超能文献

多模态模型研究脑图谱、连接性测量和降维技术对使用静息态功能连接进行注意缺陷多动障碍诊断的影响。

Multimodality model investigating the impact of brain atlases, connectivity measures, and dimensionality reduction techniques on Attention Deficit Hyperactivity Disorder diagnosis using resting state functional connectivity.

作者信息

Sharma Meghna, Arora Shaveta

机构信息

The NorthCap University, Department of Computer Science and Engineering, Gurugram, Haryana, India.

出版信息

J Med Imaging (Bellingham). 2024 Nov;11(6):064502. doi: 10.1117/1.JMI.11.6.064502. Epub 2024 Dec 20.

Abstract

PURPOSE

Various brain atlases are available to parcellate and analyze brain connections. Most traditional machine learning and deep learning studies analyzing Attention Deficit Hyperactivity Disorder (ADHD) have used either one or two brain atlases for their analysis. However, there is a lack of comprehensive research evaluating the impact of different brain atlases and associated factors such as connectivity measures and dimension reduction techniques on ADHD diagnosis.

APPROACH

This paper proposes an efficient and robust multimodality model that investigates various brain atlases utilizing different parcellation strategies and scales. Thirty combinations of six brain atlases and five distinct machine learning classifiers with optimized hyperparameters are implemented to identify the most promising brain atlas for ADHD diagnosis. These outcomes are validated using the statistical Friedman test. To enhance comprehensiveness, the impact of three different connectivity measures, each representing unique facets of brain connectivity, is also analyzed. Considering the extensive complexity of brain interconnections, the effect of various dimension reduction techniques on classification performance and execution time is also analyzed. The final model is integrated with phenotypic data to create an efficient multimodal ADHD classification model.

RESULTS

Experimental results on the ADHD-200 dataset demonstrate a significant variation in classification performance introduced by each factor. The proposed model outperforms many state-of-the-art ADHD approaches and achieves an accuracy of 77.59%, an area under the curve (AUC) score of 77.25% and an -score of 75.43%.

CONCLUSIONS

The proposed model offers clear guidance for researchers, helping to standardize atlas selection and associated factors and improve the consistency and accuracy of ADHD studies for more reliable clinical applications.

摘要

目的

有多种脑图谱可用于划分和分析脑连接。大多数分析注意力缺陷多动障碍(ADHD)的传统机器学习和深度学习研究在分析时仅使用了一两种脑图谱。然而,缺乏全面的研究来评估不同脑图谱以及诸如连接性度量和降维技术等相关因素对ADHD诊断的影响。

方法

本文提出了一种高效且稳健的多模态模型,该模型利用不同的划分策略和尺度来研究各种脑图谱。实现了六种脑图谱与五个具有优化超参数的不同机器学习分类器的三十种组合,以确定用于ADHD诊断最有前景的脑图谱。使用统计弗里德曼检验对这些结果进行验证。为提高全面性,还分析了三种不同连接性度量的影响,每种度量代表脑连接的独特方面。考虑到脑互连的广泛复杂性,还分析了各种降维技术对分类性能和执行时间的影响。最终模型与表型数据集成,以创建一个高效的多模态ADHD分类模型。

结果

在ADHD - 200数据集上的实验结果表明,每个因素都会导致分类性能出现显著差异。所提出的模型优于许多当前最先进的ADHD方法,准确率达到77.59%,曲线下面积(AUC)得分77.25%,F1得分75.43%。

结论

所提出的模型为研究人员提供了明确的指导,有助于规范图谱选择及相关因素,提高ADHD研究的一致性和准确性,以实现更可靠的临床应用。

相似文献

5

本文引用的文献

4
Granger Causality: A Review and Recent Advances.格兰杰因果关系:综述与最新进展
Annu Rev Stat Appl. 2022 Mar;9(1):289-319. doi: 10.1146/annurev-statistics-040120-010930. Epub 2021 Nov 17.
6
Identification of attention deficit hyperactivity disorder with deep learning model.利用深度学习模型识别注意力缺陷多动障碍
Phys Eng Sci Med. 2023 Sep;46(3):1081-1090. doi: 10.1007/s13246-023-01275-y. Epub 2023 May 16.
10
Attention Deficit Hyperactivity Disorder Classification Based on Deep Learning.基于深度学习的注意力缺陷多动障碍分类
IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):1581-1586. doi: 10.1109/TCBB.2022.3170527. Epub 2023 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验