Department of Physics, Harvard University, Cambridge, MA 02138, USA.
J Mol Biol. 2011 Sep 2;411(5):1062-71. doi: 10.1016/j.jmb.2011.06.049. Epub 2011 Jul 6.
Filamentous actin and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. They can also play a critical role in disease; for example, mutations in α-actinin-4 (Actn4), a dynamic actin cross-linking protein, cause proteinuric disease in humans and mice. Amino acid substitutions strongly affect the binding affinity and protein structure of Actn4. To study the physical impact of such substitutions on the underlying cytoskeletal network, we examine the bulk mechanical behavior of in vitro actin networks cross-linked with wild-type and mutant Actn4. These networks exhibit a complex viscoelastic response and are characterized by fluid-like behavior at the longest timescales, a feature that can be quantitatively accounted for through a model governed by dynamic cross-linking. The elastic behavior of the network is highly nonlinear, becoming much stiffer with applied stress. This nonlinear elastic response is also highly sensitive to the mutations of Actn4. In particular, we observe that actin networks cross-linked with Actn4 bearing the disease-causing K255E mutation are more brittle, with a lower breaking stress in comparison to networks cross-linked with wild-type Actn4. Furthermore, a mutation that ablates the first actin binding site (ABS1) in Actn4 abrogates the network's ability to stress-stiffen is standard nomenclature. These changes in the mechanical properties of actin networks cross-linked with mutant Actn4 may represent physical determinants of the underlying disease mechanism in inherited focal segmental glomerulosclerosis.
丝状肌动蛋白和相关的肌动蛋白结合蛋白在调节真核细胞的机械性能方面起着至关重要的作用。它们在疾病中也可能起着关键作用;例如,α-辅肌动蛋白-4(Actn4)的突变,一种动态肌动蛋白交联蛋白,导致人类和小鼠的蛋白尿疾病。氨基酸取代强烈影响 Actn4 的结合亲和力和蛋白质结构。为了研究这些取代对潜在细胞骨架网络的物理影响,我们研究了用野生型和突变型 Actn4 交联的体外肌动蛋白网络的整体力学行为。这些网络表现出复杂的粘弹性响应,在最长的时间尺度上表现出类似流体的行为,这一特征可以通过受动态交联控制的模型进行定量描述。网络的弹性行为具有高度的非线性,随着施加的应力变得更加僵硬。这种非线性弹性响应也对 Actn4 的突变非常敏感。特别是,我们观察到与携带致病 K255E 突变的 Actn4 交联的肌动蛋白网络更脆,与与野生型 Actn4 交联的网络相比,断裂应力更低。此外,一种消除 Actn4 中第一个肌动蛋白结合位点(ABS1)的突变会破坏网络在应力硬化方面的能力,这是标准的命名法。与突变的 Actn4 交联的肌动蛋白网络的力学性能的这些变化可能代表遗传性局灶节段性肾小球硬化症潜在疾病机制的物理决定因素。