Suppr超能文献

使用平铺分区方法对尖峰网络模型的分层皮质片进行大规模模拟。

Large-Scale Simulation of a Layered Cortical Sheet of Spiking Network Model Using a Tile Partitioning Method.

作者信息

Igarashi Jun, Yamaura Hiroshi, Yamazaki Tadashi

机构信息

Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity, RIKEN, Saitama, Japan.

Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan.

出版信息

Front Neuroinform. 2019 Nov 29;13:71. doi: 10.3389/fninf.2019.00071. eCollection 2019.

Abstract

One of the grand challenges for computational neuroscience and high-performance computing is computer simulation of a human-scale whole brain model with spiking neurons and synaptic plasticity using supercomputers. To achieve such a simulation, the target network model must be partitioned onto a number of computational nodes, and the sub-network models are executed in parallel while communicating spike information across different nodes. However, it remains unclear how the target network model should be partitioned for efficient computing on next generation of supercomputers. Specifically, reducing the communication of spike information across compute nodes is essential, because of the relatively slower network performance than processor and memory. From the viewpoint of biological features, the cerebral cortex and cerebellum contain 99% of neurons and synapses and form layered sheet structures. Therefore, an efficient method to split the network should exploit the layered sheet structures. In this study, we indicate that a tile partitioning method leads to efficient communication. To demonstrate it, a simulation software called MONET (Millefeuille-like Organization NEural neTwork simulator) that partitions a network model as described above was developed. The MONET simulator was implemented on the Japanese flagship supercomputer K, which is composed of 82,944 computational nodes. We examined a performance of calculation, communication and memory consumption in the tile partitioning method for a cortical model with realistic anatomical and physiological parameters. The result showed that the tile partitioning method drastically reduced communication data amount by replacing network communication with DRAM access and sharing the communication data with neighboring neurons. We confirmed the scalability and efficiency of the tile partitioning method on up to 63,504 compute nodes of the K computer for the cortical model. In the companion paper by Yamaura et al., the performance for a cerebellar model was examined. These results suggest that the tile partitioning method will have advantage for a human-scale whole-brain simulation on exascale computers.

摘要

计算神经科学和高性能计算面临的重大挑战之一,是使用超级计算机对具有脉冲神经元和突触可塑性的人类规模全脑模型进行计算机模拟。为实现这种模拟,必须将目标网络模型划分到多个计算节点上,子网模型在并行执行的同时,要在不同节点间传递脉冲信息。然而,目前尚不清楚如何对目标网络模型进行划分,以便在下一代超级计算机上实现高效计算。具体而言,减少计算节点间的脉冲信息通信至关重要,因为网络性能相对处理器和内存较慢。从生物学特征的角度来看,大脑皮层和小脑包含了99%的神经元和突触,并形成层状结构。因此,一种有效的网络分割方法应利用层状结构。在本研究中,我们表明平铺分区方法可实现高效通信。为证明这一点,我们开发了一款名为MONET(千层饼状组织神经网络模拟器)的模拟软件,它能按上述方式对网络模型进行分区。MONET模拟器在由82,944个计算节点组成的日本旗舰超级计算机K上实现。我们针对具有真实解剖和生理参数的皮层模型,研究了平铺分区方法在计算、通信和内存消耗方面的性能。结果表明,平铺分区方法通过用DRAM访问替代网络通信,并与相邻神经元共享通信数据,大幅减少了通信数据量。我们在K计算机的多达63,504个计算节点上,验证了平铺分区方法对皮层模型的可扩展性和效率。在Yamaura等人的配套论文中,研究了小脑模型的性能。这些结果表明,平铺分区方法在百亿亿次计算机上进行人类规模全脑模拟时将具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d23/6895031/5f43c1e37e4a/fninf-13-00071-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验