Washington National Primate Research Center, University of Washington, 1705 NE Pacific Street, Box 357330, Seattle, WA 98195, USA.
Cereb Cortex. 2012 May;22(5):1139-47. doi: 10.1093/cercor/bhr188. Epub 2011 Jul 18.
The smooth pursuit (SP) system is able to adapt to challenges associated with development or system drift to maintain pursuit accuracy. Short-term adaptation of SP can be produced experimentally using a step-ramp tracking paradigm with 2 steps of velocity (double-step paradigm). Previous studies have demonstrated that the macaque cerebellum plays an essential role in SP adaptation. However, it remains uncertain whether neuronal activity in afferent structures to the cerebellum shows changes associated with SP adaptation. Therefore, we focused on the dorsal-medial part of medial superior temporal cortex (MSTd), which is part of the cortico-ponto-cerebellar pathway thought to provide extraretinal signals needed for maintaining SP. We found that 54% of the SP-related neurons showed significant changes in the first 100 ms of response correlated with adaptive changes of initial pursuit. Our results indicate that some cortical neurons in MSTd could be inside the circuit involved in SP adaptation. Furthermore, our sample of MSTd neurons started their discharge on average 103 ms after SP onset. Therefore, we suggest that extraretinal signals carried in MSTd might be due to efference copy of pursuit eye velocity signals, which reflect plastic changes in the downstream motor output pathways (e.g., the cerebellum).
平滑追踪(SP)系统能够适应与发展或系统漂移相关的挑战,以保持追踪精度。使用具有 2 个速度步骤(双步范式)的阶跃-斜坡跟踪范式,可以在实验中产生短期适应。先前的研究表明,猕猴小脑在 SP 适应中起着重要作用。然而,尚不确定小脑传入结构的神经元活动是否会发生与 SP 适应相关的变化。因此,我们专注于内侧上颞叶皮层(MSTd)的背内侧部分,该部分是被认为提供维持 SP 所需的视网膜外信号的皮质-桥脑-小脑途径的一部分。我们发现,54%的与 SP 相关的神经元在反应的前 100 毫秒内表现出与初始追踪的适应性变化相关的显著变化。我们的结果表明,MSTd 中的一些皮质神经元可能在参与 SP 适应的回路内。此外,我们的 MSTd 神经元样本在 SP 开始后平均 103 毫秒开始放电。因此,我们认为 MSTd 中的视网膜外信号可能是由于追踪眼速度信号的传出副本引起的,这反映了下游运动输出途径(例如小脑)的可塑性变化。