Suppr超能文献

MSTd 视网膜外信号在平滑追踪适应中的作用。

Role of MSTd extraretinal signals in smooth pursuit adaptation.

机构信息

Washington National Primate Research Center, University of Washington, 1705 NE Pacific Street, Box 357330, Seattle, WA 98195, USA.

出版信息

Cereb Cortex. 2012 May;22(5):1139-47. doi: 10.1093/cercor/bhr188. Epub 2011 Jul 18.

Abstract

The smooth pursuit (SP) system is able to adapt to challenges associated with development or system drift to maintain pursuit accuracy. Short-term adaptation of SP can be produced experimentally using a step-ramp tracking paradigm with 2 steps of velocity (double-step paradigm). Previous studies have demonstrated that the macaque cerebellum plays an essential role in SP adaptation. However, it remains uncertain whether neuronal activity in afferent structures to the cerebellum shows changes associated with SP adaptation. Therefore, we focused on the dorsal-medial part of medial superior temporal cortex (MSTd), which is part of the cortico-ponto-cerebellar pathway thought to provide extraretinal signals needed for maintaining SP. We found that 54% of the SP-related neurons showed significant changes in the first 100 ms of response correlated with adaptive changes of initial pursuit. Our results indicate that some cortical neurons in MSTd could be inside the circuit involved in SP adaptation. Furthermore, our sample of MSTd neurons started their discharge on average 103 ms after SP onset. Therefore, we suggest that extraretinal signals carried in MSTd might be due to efference copy of pursuit eye velocity signals, which reflect plastic changes in the downstream motor output pathways (e.g., the cerebellum).

摘要

平滑追踪(SP)系统能够适应与发展或系统漂移相关的挑战,以保持追踪精度。使用具有 2 个速度步骤(双步范式)的阶跃-斜坡跟踪范式,可以在实验中产生短期适应。先前的研究表明,猕猴小脑在 SP 适应中起着重要作用。然而,尚不确定小脑传入结构的神经元活动是否会发生与 SP 适应相关的变化。因此,我们专注于内侧上颞叶皮层(MSTd)的背内侧部分,该部分是被认为提供维持 SP 所需的视网膜外信号的皮质-桥脑-小脑途径的一部分。我们发现,54%的与 SP 相关的神经元在反应的前 100 毫秒内表现出与初始追踪的适应性变化相关的显著变化。我们的结果表明,MSTd 中的一些皮质神经元可能在参与 SP 适应的回路内。此外,我们的 MSTd 神经元样本在 SP 开始后平均 103 毫秒开始放电。因此,我们认为 MSTd 中的视网膜外信号可能是由于追踪眼速度信号的传出副本引起的,这反映了下游运动输出途径(例如小脑)的可塑性变化。

相似文献

1
Role of MSTd extraretinal signals in smooth pursuit adaptation.
Cereb Cortex. 2012 May;22(5):1139-47. doi: 10.1093/cercor/bhr188. Epub 2011 Jul 18.
2
Extraretinal signals in MSTd neurons related to volitional smooth pursuit.
J Neurophysiol. 2006 Nov;96(5):2819-25. doi: 10.1152/jn.00538.2006. Epub 2006 Jun 21.
3
The response of MSTd neurons to perturbations in target motion during ongoing smooth-pursuit eye movements.
J Neurophysiol. 2010 Jan;103(1):519-30. doi: 10.1152/jn.00563.2009. Epub 2009 Nov 18.
4
Response properties of MST parafoveal neurons during smooth pursuit adaptation.
J Neurophysiol. 2016 Jul 1;116(1):210-7. doi: 10.1152/jn.00203.2016. Epub 2016 Apr 20.
5
Pursuit speed compensation in cortical area MSTd.
J Neurophysiol. 2002 Nov;88(5):2630-47. doi: 10.1152/jn.00002.2001.
6
Neurons in Primate Area MSTd Signal Eye Movement Direction Inferred from Dynamic Perspective Cues in Optic Flow.
J Neurosci. 2023 Mar 15;43(11):1888-1904. doi: 10.1523/JNEUROSCI.1885-22.2023. Epub 2023 Feb 1.
7
Retinal Stabilization Reveals Limited Influence of Extraretinal Signals on Heading Tuning in the Medial Superior Temporal Area.
J Neurosci. 2019 Oct 9;39(41):8064-8078. doi: 10.1523/JNEUROSCI.0388-19.2019. Epub 2019 Sep 5.
8
The neuronal basis of on-line visual control in smooth pursuit eye movements.
Vision Res. 2015 May;110(Pt B):257-64. doi: 10.1016/j.visres.2014.06.008. Epub 2014 Jul 1.
9
Role of the MST-DLPN pathway in smooth pursuit adaptation.
Prog Brain Res. 2008;171:161-5. doi: 10.1016/S0079-6123(08)00621-3.
10

引用本文的文献

1
A model of audio-visual motion integration during active self-movement.
J Vis. 2025 Feb 3;25(2):8. doi: 10.1167/jov.25.2.8.
2
Effects of smooth pursuit and second-order stimuli on visual motion prediction.
Physiol Rep. 2021 May;9(9):e14833. doi: 10.14814/phy2.14833.
3
Properties of smooth pursuit and visual motion reaction time to second-order motion stimuli.
PLoS One. 2020 Dec 14;15(12):e0243430. doi: 10.1371/journal.pone.0243430. eCollection 2020.
4
Asymmetric smooth pursuit eye movements and visual motion reaction time.
Physiol Rep. 2019 Jul;7(14):e14187. doi: 10.14814/phy2.14187.
5
6
Temporal dynamics of retinal and extraretinal signals in the FEFsem during smooth pursuit eye movements.
J Neurophysiol. 2017 May 1;117(5):1987-2003. doi: 10.1152/jn.00786.2016. Epub 2017 Feb 15.
7
Response properties of MST parafoveal neurons during smooth pursuit adaptation.
J Neurophysiol. 2016 Jul 1;116(1):210-7. doi: 10.1152/jn.00203.2016. Epub 2016 Apr 20.
8
The neuronal basis of on-line visual control in smooth pursuit eye movements.
Vision Res. 2015 May;110(Pt B):257-64. doi: 10.1016/j.visres.2014.06.008. Epub 2014 Jul 1.
9
The effects of smooth pursuit adaptation on the gain of visuomotor transmission in monkeys.
Front Syst Neurosci. 2013 Dec 23;7:119. doi: 10.3389/fnsys.2013.00119. eCollection 2013.

本文引用的文献

1
Visual guidance of smooth-pursuit eye movements: sensation, action, and what happens in between.
Neuron. 2010 May 27;66(4):477-91. doi: 10.1016/j.neuron.2010.03.027.
3
The response of MSTd neurons to perturbations in target motion during ongoing smooth-pursuit eye movements.
J Neurophysiol. 2010 Jan;103(1):519-30. doi: 10.1152/jn.00563.2009. Epub 2009 Nov 18.
4
Signal processing and distribution in cortical-brainstem pathways for smooth pursuit eye movements.
Ann N Y Acad Sci. 2009 May;1164:147-54. doi: 10.1111/j.1749-6632.2009.03859.x.
5
Smooth pursuit-related information processing in frontal eye field neurons that project to the NRTP.
Cereb Cortex. 2009 May;19(5):1186-97. doi: 10.1093/cercor/bhn166. Epub 2008 Sep 26.
6
Brain circuits for the internal monitoring of movements.
Annu Rev Neurosci. 2008;31:317-38. doi: 10.1146/annurev.neuro.31.060407.125627.
7
Horizontal smooth pursuit adaptation in macaques after muscimol inactivation of the dorsolateral pontine nucleus (DLPN).
J Neurophysiol. 2007 Nov;98(5):2918-32. doi: 10.1152/jn.00115.2007. Epub 2007 Sep 5.
8
Extraretinal signals in MSTd neurons related to volitional smooth pursuit.
J Neurophysiol. 2006 Nov;96(5):2819-25. doi: 10.1152/jn.00538.2006. Epub 2006 Jun 21.
9
Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements.
Prog Brain Res. 2006;151:461-501. doi: 10.1016/S0079-6123(05)51015-X.
10
The pretectum: connections and oculomotor-related roles.
Prog Brain Res. 2006;151:379-405. doi: 10.1016/S0079-6123(05)51012-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验