Granger Adam J, Gray John A, Lu Wei, Nicoll Roger A
Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA.
J Physiol. 2011 Sep 1;589(17):4095-101. doi: 10.1113/jphysiol.2011.213033. Epub 2011 Jul 18.
In the brain, fast, excitatory synaptic transmission occurs primarily through AMPA- and NMDA-type ionotropic glutamate receptors. These receptors are composed of subunit proteins that determine their biophysical properties and trafficking behaviour. Therefore, determining the function of these subunits and receptor subunit composition is essential for understanding the physiological properties of synaptic transmission. Here, we discuss and evaluate various genetic approaches that have been used to study AMPA and NMDA receptor subunits. These approaches have demonstrated that the GluA1 AMPA receptor subunit is required for activity-dependent trafficking and contributes to basal synaptic transmission, while the GluA2 subunit regulates Ca(2+) permeability, homeostasis and trafficking to the synapse under basal conditions. In contrast, the GluN2A and GluN2B NMDA receptor subunits regulate synaptic AMPA receptor content, both during synaptic development and plasticity. Ongoing research in this field is focusing on the molecular interactions and mechanisms that control these functions. To accomplish this, molecular replacement techniques are being used, where native subunits are replaced with receptors containing targeted mutations. In this review, we discuss a single-cell molecular replacement approach which should arguably advance our physiological understanding of ionotropic glutamate receptor subunits, but is generally applicable to study of any neuronal protein.
在大脑中,快速兴奋性突触传递主要通过AMPA型和NMDA型离子型谷氨酸受体发生。这些受体由亚基蛋白组成,这些亚基蛋白决定了它们的生物物理特性和运输行为。因此,确定这些亚基的功能和受体亚基组成对于理解突触传递的生理特性至关重要。在这里,我们讨论并评估了用于研究AMPA和NMDA受体亚基的各种遗传方法。这些方法表明,GluA1 AMPA受体亚基是活性依赖性运输所必需的,并有助于基础突触传递,而GluA2亚基在基础条件下调节Ca(2+)通透性、稳态和向突触的运输。相比之下,GluN2A和GluN2B NMDA受体亚基在突触发育和可塑性过程中调节突触AMPA受体含量。该领域正在进行的研究集中在控制这些功能的分子相互作用和机制上。为了实现这一目标,正在使用分子置换技术,即用含有靶向突变的受体替换天然亚基。在这篇综述中,我们讨论了一种单细胞分子置换方法,该方法应该可以推进我们对离子型谷氨酸受体亚基的生理学理解,但通常适用于任何神经元蛋白的研究。