Suppr超能文献

Notch 和 Ras 促进了秀丽隐杆线虫排泄管发育的连续步骤。

Notch and Ras promote sequential steps of excretory tube development in C. elegans.

机构信息

Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.

出版信息

Development. 2011 Aug;138(16):3545-55. doi: 10.1242/dev.068148. Epub 2011 Jul 19.

Abstract

Receptor tyrosine kinases and Notch are crucial for tube formation and branching morphogenesis in many systems, but the specific cellular processes that require signaling are poorly understood. Here we describe sequential roles for Notch and Epidermal growth factor (EGF)-Ras-ERK signaling in the development of epithelial tube cells in the C. elegans excretory (renal-like) organ. This simple organ consists of three tandemly connected unicellular tubes: the excretory canal cell, duct and G1 pore. lin-12 and glp-1/Notch are required to generate the canal cell, which is a source of LIN-3/EGF ligand and physically attaches to the duct during de novo epithelialization and tubulogenesis. Canal cell asymmetry and let-60/Ras signaling influence which of two equivalent precursors will attach to the canal cell. Ras then specifies duct identity, inducing auto-fusion and a permanent epithelial character; the remaining precursor becomes the G1 pore, which eventually loses epithelial character and withdraws from the organ to become a neuroblast. Ras continues to promote subsequent aspects of duct morphogenesis and differentiation, and acts primarily through Raf-ERK and the transcriptional effectors LIN-1/Ets and EOR-1. These results reveal multiple genetically separable roles for Ras signaling in tube development, as well as similarities to Ras-mediated control of branching morphogenesis in more complex organs, including the mammalian kidney. The relative simplicity of the excretory system makes it an attractive model for addressing basic questions about how cells gain or lose epithelial character and organize into tubular networks.

摘要

受体酪氨酸激酶和 Notch 对于许多系统中的管状形成和分支形态发生至关重要,但需要信号的特定细胞过程理解甚少。在这里,我们描述了 Notch 和表皮生长因子(EGF)-Ras-ERK 信号在秀丽隐杆线虫排泄(肾样)器官上皮管状细胞发育中的顺序作用。这个简单的器官由三个串联连接的单细胞管组成:排泄道细胞、导管和 G1 孔。lin-12 和 glp-1/Notch 是生成排泄道细胞所必需的,它是 LIN-3/EGF 配体的来源,并在新的上皮化和管状发生过程中与导管物理附着。 canal 细胞的不对称性和 let-60/Ras 信号影响两个等效前体中的哪一个将附着到 canal 细胞上。Ras 随后指定导管身份,诱导自动融合和永久上皮特征;剩余的前体成为 G1 孔,最终失去上皮特征并从器官中退出成为神经母细胞。 Ras 继续促进导管形态发生和分化的后续方面,并主要通过 Raf-ERK 和转录效应物 LIN-1/Ets 和 EOR-1 发挥作用。这些结果揭示了 Ras 信号在管状发育中的多个遗传上可分离的作用,以及与更复杂器官(包括哺乳动物肾脏)中 Ras 介导的分支形态发生控制的相似性。排泄系统的相对简单使其成为解决有关细胞获得或失去上皮特征以及如何组织成管状网络的基本问题的有吸引力的模型。

相似文献

1
Notch and Ras promote sequential steps of excretory tube development in C. elegans.
Development. 2011 Aug;138(16):3545-55. doi: 10.1242/dev.068148. Epub 2011 Jul 19.
2
The Lipocalin LPR-1 Cooperates with LIN-3/EGF Signaling To Maintain Narrow Tube Integrity in .
Genetics. 2017 Mar;205(3):1247-1260. doi: 10.1534/genetics.116.195156. Epub 2016 Dec 30.
3
A non-cell-autonomous role for Ras signaling in C. elegans neuroblast delamination.
Development. 2014 Nov;141(22):4279-84. doi: 10.1242/dev.112045.
4
RTK/Ras/MAPK signaling.
WormBook. 2006 Feb 11:1-19. doi: 10.1895/wormbook.1.80.1.
6
Developmental fidelity is imposed by genetically separable RalGEF activities that mediate opposing signals.
PLoS Genet. 2019 May 14;15(5):e1008056. doi: 10.1371/journal.pgen.1008056. eCollection 2019 May.
7
Transcriptional upregulation of the C. elegans Hox gene lin-39 during vulval cell fate specification.
Mech Dev. 2006 Feb;123(2):135-50. doi: 10.1016/j.mod.2005.11.003. Epub 2006 Jan 18.
9
Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development.
Science. 2001 Feb 9;291(5506):1055-8. doi: 10.1126/science.1055642. Epub 2001 Jan 25.

引用本文的文献

1
Mechanisms of lineage specification in Caenorhabditis elegans.
Genetics. 2023 Dec 6;225(4). doi: 10.1093/genetics/iyad174.
2
Post-embryonic endogenous expression and localization of LET-60/Ras in .
MicroPubl Biol. 2023 Aug 25;2023. doi: 10.17912/micropub.biology.000931. eCollection 2023.
3
The E3/E4 ubiquitin ligase UFD-2 suppresses normal and oncogenic signaling mediated by a Raf ortholog in .
Sci Signal. 2023 Aug 29;16(800):eabq4355. doi: 10.1126/scisignal.abq4355.
5
EGFR signal transduction is downregulated in C. elegans vulval precursor cells during dauer diapause.
Development. 2022 Nov 1;149(21). doi: 10.1242/dev.201094. Epub 2022 Oct 31.
6
Epithelial morphogenesis, tubulogenesis and forces in organogenesis.
Curr Top Dev Biol. 2021;144:161-214. doi: 10.1016/bs.ctdb.2020.12.012. Epub 2021 Feb 8.
9
Developmental Plasticity and Cellular Reprogramming in .
Genetics. 2019 Nov;213(3):723-757. doi: 10.1534/genetics.119.302333.
10
A Receptor Tyrosine Kinase Network Regulates Neuromuscular Function in Response to Oxidative Stress in .
Genetics. 2019 Apr;211(4):1283-1295. doi: 10.1534/genetics.119.302026. Epub 2019 Feb 19.

本文引用的文献

1
A hybrid blob-slice model for accurate and efficient detection of fluorescence labeled nuclei in 3D.
BMC Bioinformatics. 2010 Nov 29;11:580. doi: 10.1186/1471-2105-11-580.
2
3
Coronary arteries form by developmental reprogramming of venous cells.
Nature. 2010 Mar 25;464(7288):549-53. doi: 10.1038/nature08873.
4
EOR-2 is an obligate binding partner of the BTB-zinc finger protein EOR-1 in Caenorhabditis elegans.
Genetics. 2010 Apr;184(4):899-913. doi: 10.1534/genetics.109.111591. Epub 2010 Jan 11.
5
Advances in early kidney specification, development and patterning.
Development. 2009 Dec;136(23):3863-74. doi: 10.1242/dev.034876.
6
Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis.
Dev Cell. 2009 Aug;17(2):199-209. doi: 10.1016/j.devcel.2009.07.013.
7
The basics of epithelial-mesenchymal transition.
J Clin Invest. 2009 Jun;119(6):1420-8. doi: 10.1172/JCI39104.
8
VEGF and endothelial guidance in angiogenic sprouting.
Organogenesis. 2008 Oct;4(4):241-6. doi: 10.4161/org.4.4.7414.
9
Lipocalin signaling controls unicellular tube development in the Caenorhabditis elegans excretory system.
Dev Biol. 2009 May 15;329(2):201-11. doi: 10.1016/j.ydbio.2009.02.030. Epub 2009 Mar 6.
10
Cellular and molecular mechanisms of vascular lumen formation.
Dev Cell. 2009 Feb;16(2):222-31. doi: 10.1016/j.devcel.2009.01.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验