Division of Internal Medicine, Department of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Mol Syst Biol. 2011 Jul 19;7:513. doi: 10.1038/msb.2011.47.
Identifying the best drug for each cancer patient requires an efficient individualized strategy. We present MATCH (Merging genomic and pharmacologic Analyses for Therapy CHoice), an approach using public genomic resources and drug testing of fresh tumor samples to link drugs to patients. Valproic acid (VPA) is highlighted as a proof-of-principle. In order to predict specific tumor types with high probability of drug sensitivity, we create drug response signatures using publically available gene expression data and assess sensitivity in a data set of >40 cancer types. Next, we evaluate drug sensitivity in matched tumor and normal tissue and exclude cancer types that are no more sensitive than normal tissue. From these analyses, breast tumors are predicted to be sensitive to VPA. A meta-analysis across breast cancer data sets shows that aggressive subtypes are most likely to be sensitive to VPA, but all subtypes have sensitive tumors. MATCH predictions correlate significantly with growth inhibition in cancer cell lines and three-dimensional cultures of fresh tumor samples. MATCH accurately predicts reduction in tumor growth rate following VPA treatment in patient tumor xenografts. MATCH uses genomic analysis with in vitro testing of patient tumors to select optimal drug regimens before clinical trial initiation.
为每位癌症患者确定最佳药物需要有效的个体化策略。我们提出了 MATCH(用于治疗选择的基因组和药物分析融合)方法,该方法使用公共基因组资源和新鲜肿瘤样本的药物测试将药物与患者联系起来。丙戊酸(VPA)被作为原理验证。为了以高概率预测具有药物敏感性的特定肿瘤类型,我们使用公开可用的基因表达数据创建药物反应特征,并在>40 种癌症类型的数据集评估敏感性。接下来,我们评估匹配的肿瘤和正常组织中的药物敏感性,并排除比正常组织更不敏感的癌症类型。通过这些分析,预测乳腺癌对 VPA 敏感。乳腺癌数据集的荟萃分析表明,侵袭性亚型最有可能对 VPA 敏感,但所有亚型都有敏感的肿瘤。MATCH 预测与癌细胞系和新鲜肿瘤样本的三维培养中的生长抑制显著相关。MATCH 使用基因组分析和患者肿瘤的体外测试,在临床试验开始前选择最佳药物方案。