Suppr超能文献

胚胎干细胞的表观遗传学调控:聚焦于成骨和脂肪分化。

Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation.

机构信息

Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, USA.

出版信息

Stem Cells Int. 2011;2011:201371. doi: 10.4061/2011/201371. Epub 2011 Jul 11.

Abstract

Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES) cells. Mesenchymal stem cells (MSCs) are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming.

摘要

干细胞的特征是自我更新和终末分化为多种细胞类型的能力。体干细胞或成体干细胞具有有限的自我更新能力,并受到谱系限制。鉴于胚胎干细胞 (ES) 细胞相关的伦理问题,使用成体干细胞进行治疗已成为近期的研究热点。间充质干细胞 (MSCs) 是一种成体干细胞,可分化为成骨细胞、脂肪细胞、软骨细胞或肌细胞谱系。由于其易于分离和独特的特性,MSCs 被广泛认为是组织工程和修复的潜在候选者。虽然已经确定了许多对 MSC 分化很重要的信号分子,但我们对这个过程的全面了解还很缺乏。最近的研究集中在表观遗传调控在 MSC 谱系特异性分化中的作用,表明独特的 DNA 甲基化和组蛋白修饰模式在诱导 MSC 向特定谱系分化中发挥重要作用。然而,与 ES 细胞相比,MSC 的表观遗传特征反映出其分化潜力更为受限。本文综述了表观遗传修饰对 MSC 多能性和分化的影响,重点关注成骨细胞和脂肪细胞分化。我们还强调了 MSC 表观遗传学和核重编程的临床应用。

相似文献

1
Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation.
Stem Cells Int. 2011;2011:201371. doi: 10.4061/2011/201371. Epub 2011 Jul 11.
2
Dynamic changes of epigenetic signatures during chondrogenic and adipogenic differentiation of mesenchymal stem cells.
Biomed Pharmacother. 2017 May;89:719-731. doi: 10.1016/j.biopha.2017.02.093. Epub 2017 Mar 6.
10
Label-free separation of mesenchymal stem cell subpopulations with distinct differentiation potencies and paracrine effects.
Biomaterials. 2020 May;240:119881. doi: 10.1016/j.biomaterials.2020.119881. Epub 2020 Feb 18.

引用本文的文献

1
Effective Bone Tissue Fabrication Using 3D-Printed Citrate-Based Nanocomposite Scaffolds Laden with BMP9-Stimulated Human Urine Stem Cells.
ACS Appl Mater Interfaces. 2025 Jan 8;17(1):197-210. doi: 10.1021/acsami.4c13246. Epub 2024 Dec 24.
2
Epigenetic control of dental stem cells: progress and prospects in multidirectional differentiation.
Epigenetics Chromatin. 2024 Dec 3;17(1):37. doi: 10.1186/s13072-024-00563-5.
3
Comparison of infant bone marrow- and umbilical cord-derived mesenchymal stem cells in multilineage differentiation.
Regen Ther. 2024 Oct 3;26:837-849. doi: 10.1016/j.reth.2024.09.011. eCollection 2024 Jun.
4
Altered Methylation Levels in LINE-1 in Dental Pulp Stem Cell-Derived Osteoblasts.
Int Dent J. 2025 Apr;75(2):1269-1276. doi: 10.1016/j.identj.2024.09.009. Epub 2024 Oct 5.
6
Adipose-derived mesenchymal stem cells (MSCs) are a superior cell source for bone tissue engineering.
Bioact Mater. 2023 Dec 14;34:51-63. doi: 10.1016/j.bioactmat.2023.12.003. eCollection 2024 Apr.
7
Umbilical cord DNA methylation is associated with body mass index trajectories from birth to adolescence.
EBioMedicine. 2023 May;91:104550. doi: 10.1016/j.ebiom.2023.104550. Epub 2023 Apr 21.
8
Regulatory mechanisms of GCN5 in osteogenic differentiation of MSCs in periodontitis.
Clin Exp Dent Res. 2023 Jun;9(3):464-471. doi: 10.1002/cre2.695. Epub 2023 Apr 6.
9
The potential role of integrin alpha 6 in human mesenchymal stem cells.
Front Genet. 2022 Sep 16;13:968228. doi: 10.3389/fgene.2022.968228. eCollection 2022.
10
The Emerging Roles and Therapeutic Implications of Epigenetic Modifications in Ovarian Cancer.
Front Endocrinol (Lausanne). 2022 May 10;13:863541. doi: 10.3389/fendo.2022.863541. eCollection 2022.

本文引用的文献

1
Mesenchymal stem cells: Molecular characteristics and clinical applications.
World J Stem Cells. 2010 Aug 26;2(4):67-80. doi: 10.4252/wjsc.v2.i4.67.
2
Epigenetic Basis for the Differentiation Potential of Mesenchymal and Embryonic Stem Cells.
Transfus Med Hemother. 2008;35(3):205-215. doi: 10.1159/000127449. Epub 2008 May 8.
3
The epigenetic mechanism of mechanically induced osteogenic differentiation.
J Biomech. 2010 Nov 16;43(15):2881-6. doi: 10.1016/j.jbiomech.2010.07.033. Epub 2010 Aug 21.
4
DNA methylation of the Trip10 promoter accelerates mesenchymal stem cell lineage determination.
Biochem Biophys Res Commun. 2010 Sep 24;400(3):305-12. doi: 10.1016/j.bbrc.2010.08.048. Epub 2010 Aug 19.
5
Programming differentiation potential in mesenchymal stem cells.
Epigenetics. 2010 Aug 16;5(6):476-82. doi: 10.4161/epi.5.6.12517.
6
PPARgamma in adipocyte differentiation and metabolism--novel insights from genome-wide studies.
FEBS Lett. 2010 Aug 4;584(15):3242-9. doi: 10.1016/j.febslet.2010.06.010. Epub 2010 Jun 11.
7
Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage.
Mol Biol Cell. 2010 Jun 15;21(12):2066-77. doi: 10.1091/mbc.e10-01-0018. Epub 2010 Apr 21.
9
Chromatin immunoprecipitation (ChIP).
Cold Spring Harb Protoc. 2009 Sep;2009(9):pdb.prot5279. doi: 10.1101/pdb.prot5279.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验