Zhao Piao, Zhu Yi, Kim Mirae, Zhao Guozhi, Wang Yonghui, Collins Caralyn P, Mei Ou, Zhang Yuanyuan, Duan Chongwen, Zhong Jiamin, Zhang Hui, You Wulin, Shen Guowei, Luo Changqi, Wu Xingye, Li Jingjing, Shu Yi, Luu Hue H, Haydon Rex C, Lee Michael J, Shi Lewis L, Huang Wei, Fan Jiaming, Sun Cheng, Wen Liangyuan, Ameer Guillermo A, He Tong-Chuan, Reid Russell R
Departments of Orthopaedic Surgery, Urology, and Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States.
ACS Appl Mater Interfaces. 2025 Jan 8;17(1):197-210. doi: 10.1021/acsami.4c13246. Epub 2024 Dec 24.
Effective repair of large bone defects through bone tissue engineering (BTE) remains an unmet clinical challenge. Successful BTE requires optimal and synergistic interactions among biocompatible scaffolds, osteogenic factors, and osteoprogenitors to form a highly vascularized microenvironment for bone regeneration and osseointegration. We sought to develop a highly effective BTE system by using 3D printed citrate-based mPOC/hydroxyapatite (HA) composites laden with BMP9-stimulated human urine stem cells (USCs). Specifically, we synthesized and characterized methacrylate poly(1,8 octamethylene citrate) (mPOC), mixed it with 0%, 40% or 60% HA (i.e., mPOC-0HA, mPOC-40HA, or mPOC-60HA), and fabricated composite scaffold via micro-continuous liquid interface production (μCLIP). The 3D-printed mPOC-HA composite scaffolds were compatible with human USCs that exhibited high osteogenic activity upon BMP9 stimulation. Subcutaneous implantation of mPOC-HA scaffolds laden with BMP9-stimulated USCs revealed effective bone formation in all three types of mPOC-HA composite scaffolds. Histologic evaluation revealed that the mPOC-60HA composite scaffold yielded the most mature bone, resembling native bone tissue with extensive scaffold-osteointegration. Collectively, these findings demonstrate that the citrate-based mPOC-60HA composite, human urine stem cells, and the potent osteogenic factor BMP9 constitute a desirable triad for effective bone tissue engineering.
通过骨组织工程(BTE)有效修复大的骨缺损仍然是一项尚未解决的临床挑战。成功的骨组织工程需要生物相容性支架、成骨因子和骨祖细胞之间实现最佳的协同相互作用,以形成用于骨再生和骨整合的高度血管化微环境。我们试图通过使用负载BMP9刺激的人尿干细胞(USCs)的3D打印柠檬酸盐基mPOC/羟基磷灰石(HA)复合材料来开发一种高效的骨组织工程系统。具体而言,我们合成并表征了甲基丙烯酸聚(1,8-辛二醇柠檬酸酯)(mPOC),将其与0%、40%或60%的HA混合(即mPOC-0HA、mPOC-40HA或mPOC-60HA),并通过微连续液界面生产(μCLIP)制造复合支架。3D打印的mPOC-HA复合支架与人USCs相容,这些细胞在BMP9刺激下表现出高成骨活性。皮下植入负载BMP9刺激的USCs的mPOC-HA支架显示,在所有三种类型的mPOC-HA复合支架中均有有效的骨形成。组织学评估显示,mPOC-60HA复合支架产生的骨最成熟,类似于具有广泛支架-骨整合的天然骨组织。总体而言,这些发现表明,基于柠檬酸盐的mPOC-60HA复合材料、人尿干细胞和强效成骨因子BMP9构成了有效骨组织工程的理想三联体。