Suppr超能文献

多靶点定量构效关系建模在 HIV-HCV 共抑制剂的分析和设计中的应用:一项计算机研究。

Multi-target QSAR modelling in the analysis and design of HIV-HCV co-inhibitors: an in-silico study.

机构信息

College of Life Science and Biotechnology, Tongji University, 200092, China.

出版信息

BMC Bioinformatics. 2011 Jul 20;12:294. doi: 10.1186/1471-2105-12-294.

Abstract

BACKGROUND

HIV and HCV infections have become the leading global public-health threats. Even more remarkable, HIV-HCV co-infection is rapidly emerging as a major cause of morbidity and mortality throughout the world, due to the common rapid mutation characteristics of the two viruses as well as their similar complex influence to immunology system. Although considerable progresses have been made on the study of the infection of HIV and HCV respectively, few researches have been conducted on the investigation of the molecular mechanism of their co-infection and designing of the multi-target co-inhibitors for the two viruses simultaneously.

RESULTS

In our study, a multi-target Quantitative Structure-Activity Relationship (QSAR) study of the inhibitors for HIV-HCV co-infection were addressed with an in-silico machine learning technique, i.e. multi-task learning, to help to guide the co-inhibitor design. Firstly, an integrated dataset with 3 HIV inhibitor subsets targeted on protease, integrase and reverse transcriptase respectively, together with another 6 subsets of 2 HCV inhibitors targeted on NS3 serine protease and NS5B polymerase respectively were compiled. Secondly, an efficient multi-target QSAR modelling of HIV-HCV co-inhibitors was performed by applying an accelerated gradient method based multi-task learning on the whole 9 datasets. Furthermore, by solving the L-1-infinity regularized optimization, the Drug-like index features for compound description were ranked according to their joint importance in multi-target QSAR modelling of HIV and HCV. Finally, a drug structure-activity simulation for investigating the relationships between compound structures and binding affinities was presented based on our multiple target analysis, which is then providing several novel clues for the design of multi-target HIV-HCV co-inhibitors with increasing likelihood of successful therapies on HIV, HCV and HIV-HCV co-infection.

CONCLUSIONS

The framework presented in our study provided an efficient way to identify and design inhibitors that simultaneously and selectively bind to multiple targets from multiple viruses with high affinity, and will definitely shed new lights on the future work of inhibitor synthesis for multi-target HIV, HCV, and HIV-HCV co-infection treatments.

摘要

背景

HIV 和 HCV 感染已成为全球主要的公共卫生威胁。更为显著的是,由于这两种病毒具有共同的快速突变特征以及对免疫系统的相似复杂影响,HIV-HCV 合并感染迅速成为全球发病率和死亡率的主要原因。尽管分别对 HIV 和 HCV 的感染进行了相当多的研究,但对两种病毒合并感染的分子机制的研究以及同时针对两种病毒的多靶点共抑制剂的设计却很少。

结果

在我们的研究中,采用一种基于机器的机器学习技术,即多任务学习,对 HIV-HCV 合并感染抑制剂进行了多靶定量构效关系(QSAR)研究,以帮助指导共抑制剂设计。首先,我们编译了一个集成数据集,其中包含分别针对蛋白酶、整合酶和逆转录酶的 3 个 HIV 抑制剂子集,以及另外 6 个分别针对 NS3 丝氨酸蛋白酶和 NS5B 聚合酶的 2 个 HCV 抑制剂子集。其次,我们通过应用基于加速梯度法的多任务学习对整个 9 个数据集进行了高效的 HIV-HCV 共抑制剂多靶 QSAR 建模。此外,通过求解 L-1 范数正则化优化问题,我们根据其在 HIV 和 HCV 多靶 QSAR 建模中的联合重要性对化合物描述的药物样指数特征进行了排序。最后,基于我们的多靶分析,我们提出了一种药物结构-活性模拟方法,用于研究化合物结构与结合亲和力之间的关系,这为设计多靶 HIV-HCV 共抑制剂提供了一些新的线索,这些抑制剂具有更高的成功治疗 HIV、HCV 和 HIV-HCV 合并感染的可能性。

结论

本研究提出的框架为从多种病毒中同时识别和设计具有高亲和力的同时选择性结合多个靶标的抑制剂提供了一种有效的方法,必将为多靶 HIV、HCV 和 HIV-HCV 合并感染治疗的抑制剂合成的未来工作带来新的启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce95/3167801/69b4442f39b8/1471-2105-12-294-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验