Suppr超能文献

对手风琴光栅错觉的数学分析:用微分几何方法引入 3D 孔径问题。

Mathematical analysis of the accordion grating illusion: a differential geometry approach to introduce the 3D aperture problem.

机构信息

Cognitive and Neural Systems Department, Boston University, MA 02215, United States.

出版信息

Neural Netw. 2011 Dec;24(10):1093-101. doi: 10.1016/j.neunet.2011.06.016. Epub 2011 Jul 5.

Abstract

When an observer moves towards a square-wave grating display, a non-rigid distortion of the pattern occurs in which the stripes bulge and expand perpendicularly to their orientation; these effects reverse when the observer moves away. Such distortions present a new problem beyond the classical aperture problem faced by visual motion detectors, one we describe as a 3D aperture problem as it incorporates depth signals. We applied differential geometry to obtain a closed form solution to characterize the fluid distortion of the stripes. Our solution replicates the perceptual distortions and enabled us to design a nulling experiment to distinguish our 3D aperture solution from other candidate mechanisms (see Gori et al. (in this issue)). We suggest that our approach may generalize to other motion illusions visible in 2D displays.

摘要

当观察者朝向一个方波光栅显示器移动时,会发生非刚性的图案扭曲,其中条纹向外凸起并垂直于其方向扩展;当观察者远离时,这些效果会反转。这种扭曲超出了视觉运动探测器所面临的经典孔径问题,我们将其描述为 3D 孔径问题,因为它包含了深度信号。我们应用微分几何得到了一个封闭形式的解,以描述条纹的流体变形。我们的解复制了感知扭曲,使我们能够设计一个消隐实验来区分我们的 3D 孔径解与其他候选机制(见 Gori 等人(本期特刊))。我们认为,我们的方法可能推广到其他在 2D 显示器中可见的运动错觉。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验