Andersen Melvin E, Dennison James E
CIIT, Centers for Health Research, Six Davis Dr., PO Box 12137, Research Triangle Park, NC 27709-2137, USA.
Environ Toxicol Pharmacol. 2004 Mar;16(1-2):1-11. doi: 10.1016/j.etap.2003.10.004.
Mechanistic studies with simple mixtures have provided insights into the nature of interactions among chemicals that lead to non-additive effects and have elucidated the exposure conditions under which interactions are likely to occur. This paper discusses studies on four mixtures: (1) 1,1-dichloroethylene and trichloroethylene, (2) carbon tetrachloride and Kepone, (3) hexane and methyl-n-butylketone, and (4) coplanar and non-coplanar polychlorinated biphenyls. These mechanistic studies show that interactions should be described at the level of target tissue dose and are best categorized as either pharmacokinetic (PK) or pharmacodynamic (PD) interactions. In PK interactions the presence of a second chemical alters the kinetics such that a unit of administered dose no longer produces a unit of dose at the target tissue. In PD interactions, the presence of other compounds alters the PDs such that a unit tissue dose no longer produces a unit of response. Physiologically based pharmacokinetic (PBPK) models for mixtures have become important tools for predicting conditions under which interactions are likely to alter the assumption of additivity and have permitted calculation of interaction thresholds with more confidence. New cumulative risk assessment approaches have provided opportunities to classify compounds on the basis of similar chemistry-based modes of action (cholinesterase inhibitors) or similar physiological modes of action (diverse chemicals that alter a common biological outcome, such as defeminization of the developing nervous system). The latter examples present challenges for expanding our risk assessment paradigm to focus on the biology of responses more than on the kinetics of the xenobiotics. Some of the future advances in mixture research will depend on progress in systems biology, a discipline that integrates information across multiple level of biological organization producing PD models of normal function and assessing conditions under which exposures to chemicals lead to the perturbations sufficiently great to produce toxicity and disease. We describe briefly the elements of a systems biology approach for assessing the interactions between various PCB congeners.
对简单混合物开展的机制研究,为了解导致非加和效应的化学物质之间相互作用的本质提供了思路,并阐明了可能发生相互作用的暴露条件。本文讨论了对四种混合物开展的研究:(1)1,1 - 二氯乙烯和三氯乙烯;(2)四氯化碳和开蓬;(3)己烷和甲基正丁基甲酮;(4)共平面和非共平面多氯联苯。这些机制研究表明,相互作用应在靶组织剂量水平进行描述,最好分为药代动力学(PK)或药效动力学(PD)相互作用。在PK相互作用中,第二种化学物质的存在会改变动力学,使得单位给药剂量在靶组织中不再产生单位剂量。在PD相互作用中,其他化合物的存在会改变药效动力学,使得单位组织剂量不再产生单位反应。基于生理的混合物药代动力学(PBPK)模型已成为预测相互作用可能改变加和性假设的条件的重要工具,并使得更有信心地计算相互作用阈值。新的累积风险评估方法提供了机会,可根据基于化学的相似作用模式(胆碱酯酶抑制剂)或相似生理作用模式(改变共同生物学结果的多种化学物质,如发育中神经系统的雌性化)对化合物进行分类。后一个例子为扩展我们的风险评估范式带来了挑战,即要更多地关注反应生物学而非外源性物质的动力学。混合物研究未来的一些进展将取决于系统生物学的进展,这是一门整合多个生物组织层次信息的学科,可生成正常功能的PD模型,并评估接触化学物质导致足以产生毒性和疾病的扰动的条件。我们简要描述了一种用于评估各种多氯联苯同系物之间相互作用的系统生物学方法的要素。