Quantitative and Computational Toxicology Group, Center for Environmental Toxicology and Technology, Colorado State University, Foothills Campus, Ft. Collins, CO 80523-1690, USA; Departments of Environmental and Radiological Health Sciences, Atlanta, GA, USA.
Environ Toxicol Pharmacol. 2004 Nov;18(2):65-81. doi: 10.1016/j.etap.2004.01.015.
Because of the pioneering vision of certain leaders in the biomedical field, the last two decades witnessed rapid advances in the area of chemical mixture toxicology. Earlier studies utilized conventional toxicology protocol and methods, and they were mainly descriptive in nature. Two good examples might be the parallel series of studies conducted by the U.S. National Toxicology Program and TNO in The Netherlands, respectively. As a natural course of progression, more and more sophistication was incorporated into the toxicology studies of chemical mixtures. Thus, at least the following seven areas of scientific achievements in chemical mixture toxicology are evident in the literature: (a) the application of better and more robust statistical methods; (b) the exploration and incorporation of mechanistic bases for toxicological interactions; (c) the application of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling; (d) the studies on more complex chemical mixtures; (e) the use of science-based risk assessment approaches; (f) the utilization of functional genomics; and (g) the application of technology. Examples are given for the discussion of each of these areas. Two important concepts emerged from these studies and they are: (1) dose-dependent toxicologic interactions; and (2) "interaction thresholds". Looking into the future, one of the most challenging areas in chemical mixture research is finding the answer to the question "when one tries to characterize the health effects of chemical mixtures, how does one deal with the infinite number of combination of chemicals, and other possible stressors?" Undoubtedly, there will be many answers from different groups of researchers. Our answer, however, is first to focus on the finite (biological processes) rather than the infinite (combinations of chemical mixtures and multiple stressors). The idea is that once we know a normal biological process(es), all stimuli and insults from external stressors are merely perturbations of the normal biological process(es). The next step is to "capture" the biological process(es) by integrating the recent advances in computational technology and modern biology. Here, the computer-assisted Reaction Network Modeling, linked with PBPK modeling, offers a ray of hope to dealing with the complex biological systems.
由于生物医学领域某些领导者的开拓性眼光,过去二十年见证了化学混合物毒理学领域的快速发展。早期的研究利用了传统的毒理学方案和方法,主要是描述性的。美国国家毒理学计划和荷兰 TNO 分别进行的一系列平行研究就是两个很好的例子。作为一个自然的发展过程,越来越多的复杂性被纳入到化学混合物的毒理学研究中。因此,至少在化学混合物毒理学的以下七个科学成就领域,文献中有明显的体现:(a) 应用更好、更稳健的统计方法;(b) 探索和纳入毒理学相互作用的机制基础;(c) 应用基于生理学的药代动力学/药效学(PBPK/PD)模型;(d) 更复杂的化学混合物研究;(e) 采用基于科学的风险评估方法;(f) 利用功能基因组学;和(g) 应用技术。本文将对每个领域的研究进行讨论。从这些研究中出现了两个重要的概念:(1) 剂量依赖性毒理学相互作用;和(2) “相互作用阈值”。展望未来,化学混合物研究中最具挑战性的领域之一是回答“当人们试图描述化学混合物的健康影响时,如何处理化学混合物的组合数量和其他可能的应激源的无限数量?” 毫无疑问,不同研究小组会有许多答案。然而,我们的答案是首先关注有限的(生物学过程)而不是无限的(化学混合物的组合和多种应激源)。其理念是,一旦我们了解了正常的生物学过程,所有来自外部应激源的刺激和干扰仅仅是正常生物学过程的扰动。下一步是通过整合计算技术和现代生物学的最新进展来“捕捉”生物学过程。在这里,计算机辅助反应网络建模与 PBPK 建模相结合,为处理复杂的生物系统提供了一线希望。