Suppr超能文献

蛋白质 S-谷胱甘肽化:蛋白质功能的氧化还原敏感调节。

Protein S-glutathiolation: redox-sensitive regulation of protein function.

机构信息

Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA.

出版信息

J Mol Cell Cardiol. 2012 Mar;52(3):559-67. doi: 10.1016/j.yjmcc.2011.07.009. Epub 2011 Jul 20.

Abstract

Reversible protein S-glutathiolation has emerged as an important mechanism of post-translational modification. Under basal conditions several proteins remain adducted to glutathione, and physiological glutathiolation of proteins has been shown to regulate protein function. Enzymes that promote glutathiolation (e.g., glutathione-S-transferase-P) or those that remove glutathione from proteins (e.g., glutaredoxin) have been identified. Modification by glutathione has been shown to affect protein catalysis, ligand binding, oligomerization and protein-protein interactions. Conditions associated with oxidative or nitrosative stress, such as ischemia-reperfusion, hypertension and tachycardia increase protein glutathiolation via changes in the glutathione redox status (GSH/GSSG) or through the formation of sulfenic acid (SOH) or nitrosated (SNO) cysteine intermediates. These "activated" thiols promote reversible S-glutathiolation of key proteins involved in cell signaling, energy production, ion transport, and cell death. Hence, S-glutathiolation is ideally suited for integrating and mounting fine-tuned responses to changes in the redox state. S-glutathiolation also provides a temporary glutathione "cap" to protect protein thiols from irreversible oxidation and it could be an important mechanism of protein "encryption" to maintain proteins in a functionally silent state until they are needed during conditions of stress. Current evidence suggests that the glutathiolation-deglutathiolation cycle integrates and interacts with other post-translational mechanisms to regulate signal transduction, metabolism, inflammation, and apoptosis. This article is part of a Special Section entitled "Post-translational Modification."

摘要

蛋白质 S-谷胱甘肽化的可逆性已成为一种重要的翻译后修饰机制。在基础条件下,几种蛋白质仍然与谷胱甘肽结合,并且已经表明蛋白质的生理谷胱甘肽化可以调节蛋白质功能。已经鉴定出促进谷胱甘肽化的酶(例如,谷胱甘肽-S-转移酶-P)或从蛋白质中去除谷胱甘肽的酶(例如,谷胱甘肽还原酶)。谷胱甘肽的修饰已被证明会影响蛋白质催化、配体结合、寡聚化和蛋白质-蛋白质相互作用。与氧化或硝化应激相关的条件,如缺血再灌注、高血压和心动过速,通过改变谷胱甘肽氧化还原状态(GSH/GSSG)或通过形成亚磺酸(SOH)或硝酰化(SNO)半胱氨酸中间产物,增加蛋白质的谷胱甘肽化。这些“激活”的巯基促进参与细胞信号转导、能量产生、离子转运和细胞死亡的关键蛋白质的可逆 S-谷胱甘肽化。因此,S-谷胱甘肽化非常适合整合和微调对氧化还原状态变化的反应。S-谷胱甘肽化还为蛋白质巯基提供了一个临时的谷胱甘肽“盖帽”,以防止其不可逆氧化,并且它可能是蛋白质“加密”的重要机制,以在应激条件下保持蛋白质处于功能沉默状态,直到需要它们。目前的证据表明,谷胱甘肽化-去谷胱甘肽化循环整合并与其他翻译后机制相互作用,以调节信号转导、代谢、炎症和细胞凋亡。本文是一个题为“翻译后修饰”的特刊的一部分。

相似文献

10
ROLE OF THIOLS IN OXIDATIVE STRESS.硫醇在氧化应激中的作用。
Curr Opin Toxicol. 2018 Feb;7:133-139. doi: 10.1016/j.cotox.2018.03.005. Epub 2018 Mar 21.

引用本文的文献

1
The Molecular Pathology of Pre-Eclamptic Hypertension.子痫前期高血压的分子病理学
Curr Issues Mol Biol. 2025 May 20;47(5):375. doi: 10.3390/cimb47050375.
5
Nuclear factor kappa B expression in non-small cell lung cancer.核因子 kappa B 在非小细胞肺癌中的表达。
Biomed Pharmacother. 2023 Nov;167:115459. doi: 10.1016/j.biopha.2023.115459. Epub 2023 Sep 15.
10
Metabolic Dysregulation Contributes to the Progression of Alzheimer's Disease.代谢失调促进阿尔茨海默病的进展。
Front Neurosci. 2020 Nov 5;14:530219. doi: 10.3389/fnins.2020.530219. eCollection 2020.

本文引用的文献

8
Glutaredoxin-1 regulates TRAF6 activation and the IL-1 receptor/TLR4 signalling.谷氧还蛋白-1 调节 TRAF6 激活和 IL-1 受体/TLR4 信号通路。
Biochem Biophys Res Commun. 2010 Dec 17;403(3-4):335-9. doi: 10.1016/j.bbrc.2010.11.029. Epub 2010 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验