Butler Russell, Gilbert Guillaume, Descoteaux Maxime, Bernier Pierre-Michel, Whittingstall Kevin
Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre d'imagerie moléculaire de Sherbrooke (CIMS), Centre de Recherche CHUS, Canada.
MR Clinical Science, Philips Healthcare Canada, 281 H illmount Road, Markham, Ontario, L6C 2S3, Canada.
J Neurosci Methods. 2017 Feb 15;278:36-45. doi: 10.1016/j.jneumeth.2016.12.013. Epub 2016 Dec 23.
The growing popularity of simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) opens up the possibility of imaging EEG electrodes while the subject is in the scanner. Such information could be useful for improving the fusion of EEG-fMRI datasets.
Here, we report for the first time how an ultra-short echo time (UTE) MR sequence can image the materials of an MR-compatible EEG cap, finding that electrodes and some parts of the wiring are visible in a high resolution UTE. Using these images, we developed a segmentation procedure to obtain electrode coordinates based on voxel intensity from the raw UTE, using hand labeled coordinates as the starting point.
We were able to visualize and segment 95% of EEG electrodes using a short (3.5min) UTE sequence. We provide scripts and template images so this approach can now be easily implemented to obtain precise, subject-specific EEG electrode positions while adding minimal acquisition time to the simultaneous EEG-fMRI protocol.
COMPARISON WITH EXISTING METHOD(S): T1 gel artifacts are not robust enough to localize all electrodes across subjects, the polymers composing Brainvision cap electrodes are not visible on a T1, and adding T1 visible materials to the EEG cap is not always possible. We therefore consider our method superior to existing methods for obtaining electrode positions in the scanner, as it is hardware free and should work on a wide range of materials (caps).
EEG electrode positions are obtained with high precision and no additional hardware.
同步脑电图(EEG)和功能磁共振成像(fMRI)越来越受欢迎,这使得在受试者处于扫描仪中时对EEG电极进行成像成为可能。此类信息可能有助于改善EEG-fMRI数据集的融合。
在此,我们首次报告了一种超短回波时间(UTE)磁共振序列如何对与磁共振兼容的EEG帽的材料进行成像,发现电极和部分线路在高分辨率UTE图像中可见。利用这些图像,我们开发了一种分割程序,以原始UTE的体素强度为基础,以手动标记的坐标为起点来获取电极坐标。
我们能够使用短(3.5分钟)UTE序列可视化并分割95%的EEG电极。我们提供了脚本和模板图像,因此现在可以轻松实施此方法,以获取精确的、针对个体的EEG电极位置,同时在同步EEG-fMRI协议中增加最少的采集时间。
T1凝胶伪影在跨受试者定位所有电极方面不够稳健,组成Brainvision帽电极的聚合物在T1图像上不可见,并且在EEG帽中添加T1可见材料并非总是可行的。因此,我们认为我们的方法在获取扫描仪中电极位置方面优于现有方法,因为它无需硬件,并且适用于多种材料(帽)。
无需额外硬件即可高精度获取EEG电极位置。